2.1.59 Problem 59
Internal
problem
ID
[10045]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
59
Date
solved
:
Monday, December 08, 2025 at 07:12:07 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
2.1.59.1 Solved using first_order_ode_dAlembert
1.585 (sec)
Entering first order ode dAlembert solver
\begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*}
Let \(p=y^{\prime }\) the ode becomes \begin{align*} p +\sin \left (x -y \right ) = 0 \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= x +\arcsin \left (p \right ) \\
\end{align*}
This has the form \begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\) . The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= 1\\ g &= \arcsin \left (p \right ) \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p -1 = \frac {p^{\prime }\left (x \right )}{\sqrt {-p^{2}+1}}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p -1 = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=1 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = x +\frac {\pi }{2} \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\) . From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \left (p \left (x \right )-1\right ) \sqrt {-p \left (x \right )^{2}+1}
\end{equation}
This ODE is now solved for \(p \left (x \right )\) .
No inversion is needed.
Integrating gives
\begin{align*} \int \frac {1}{\left (p -1\right ) \sqrt {-p^{2}+1}}d p &= dx\\ -\frac {p +1}{\sqrt {-p^{2}+1}}&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} \left (p -1\right ) \sqrt {-p^{2}+1}&= 0 \end{align*}
for \(p \left (x \right )\) . This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (x \right ) = -1\\ p \left (x \right ) = 1 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
y &= x +\arcsin \left (\frac {c_1^{2}+2 c_1 x +x^{2}-1}{c_1^{2}+2 c_1 x +x^{2}+1}\right ) \\
y &= x -\frac {\pi }{2} \\
y &= x +\frac {\pi }{2} \\
\end{align*}
Simplifying the above gives \begin{align*}
y &= x +\frac {\pi }{2} \\
y &= x +\arcsin \left (\frac {\left (x +c_1 +1\right ) \left (x +c_1 -1\right )}{c_1^{2}+2 c_1 x +x^{2}+1}\right ) \\
y &= x -\frac {\pi }{2} \\
y &= x +\frac {\pi }{2} \\
\end{align*}
The solution \[
y = x -\frac {\pi }{2}
\]
was
found not to satisfy the ode or the IC. Hence it is removed.
Figure 2.144: Slope field \(y^{\prime }+\sin \left (x -y\right ) = 0\)
Summary of solutions found
\begin{align*}
y &= x +\frac {\pi }{2} \\
y &= x +\arcsin \left (\frac {\left (x +c_1 +1\right ) \left (x +c_1 -1\right )}{c_1^{2}+2 c_1 x +x^{2}+1}\right ) \\
\end{align*}
0.047 (sec)
Entering first order ode form A1 solver
\begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*}
The given ode has the general form \begin{align*} y^{\prime } & = B+C f\left ( ax +b y +c\right ) \tag {1} \end{align*}
Comparing (1) to the ode given shows the parameters in the ODE have these values
\begin{align*} B &= 0\\ C &= -1\\ a &= 1\\ b &= -1\\ c &= 0 \end{align*}
This form of ode can be solved by change of variables \(u=ax+b y +c\) which makes the ode separable.
\begin{align*} u^{\prime }\left (x \right ) &=a+b y^{\prime } \end{align*}
Or
\begin{align*} y^{\prime } &= \frac { u^{\prime }\left (x \right ) - a} {b} \end{align*}
The ode becomes
\begin{align*} \frac {u' - a}{b} & = B+C f\left ( u\right ) \\ u' & =b B+ b C f\left ( u\right ) +a \\ \frac {du}{b B+b C f\left ( u\right ) +a} &= d x \end{align*}
Integrating gives
\begin{align*} \int \frac {du}{b B+ b C f(u) +a} &=x+c_1\\ \int ^{u}\frac {d\tau }{b B + b C f(\tau ) +a} & = x+c_1 \end{align*}
Replacing back \(u=ax+b y +c\) the above becomes
\begin{equation} \int ^{ax+b y +c}\frac {d\tau }{b B+b C f\left ( \tau \right ) +a} = x+c_{1}\tag {2} \end{equation}
If initial conditions are given as \(y\left ( x_{0}\right ) = y_{0}\) , the above becomes
\begin{align*} \int _{0}^{a x_{0}+b y_{0}+c}\frac {d\tau }{b B + b C f\left ( \tau \right ) +a} & =x_{0}+c_{1}\\ c_{1} & =\int _{0}^{ax+by_{0}+c}\frac {d\tau }{b B+ b C f\left ( \tau \right )+a}-x_{0} \end{align*}
Substituting this into (2) gives
\begin{align*} \int ^{ax+by+c}\frac {d\tau }{bB+bC f\left ( \tau \right ) +a}= x+\int _{0}^{ax+by_{0}+c}\frac {d\tau }{bB+bC f\left ( \tau \right ) +a}-x_{0} \tag {3} \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= x +2 \arctan \left (\frac {c_1 +x +2}{x +c_1}\right ) \\
\end{align*}
Figure 2.145: Slope field \(y^{\prime }+\sin \left (x -y\right ) = 0\)
Summary of solutions found
\begin{align*}
y &= x +2 \arctan \left (\frac {c_1 +x +2}{x +c_1}\right ) \\
\end{align*}
2.1.59.3 Solved using first_order_ode_LIE
1.283 (sec)
Entering first order ode LIE solver
\begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*}
Writing the ode as \begin{align*} y^{\prime }&=-\sin \left (x -y \right )\\ y^{\prime }&= \omega \left ( x,y\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Using these anstaz
\begin{align*}
\tag{1E} \xi &= 1 \\
\tag{2E} \eta &= \frac {A x +B y}{C x} \\
\end{align*}
Where the unknown
coefficients are \[
\{A, B, C\}
\]
Substituting equations (1E,2E) and \(\omega \) into (A) gives \begin{equation}
\tag{5E} \frac {A}{C x}-\frac {A x +B y}{C \,x^{2}}-\frac {\sin \left (x -y \right ) B}{C x}+\cos \left (x -y \right )-\frac {\cos \left (x -y \right ) \left (A x +B y \right )}{C x} = 0
\end{equation}
Putting the above in normal
form gives \[
-\frac {A \cos \left (x -y \right ) x^{2}+B \cos \left (x -y \right ) x y -\cos \left (x -y \right ) C \,x^{2}+\sin \left (x -y \right ) B x +B y}{C \,x^{2}} = 0
\]
Setting the numerator to zero gives \begin{equation}
\tag{6E} -A \cos \left (x -y \right ) x^{2}-B \cos \left (x -y \right ) x y +\cos \left (x -y \right ) C \,x^{2}-\sin \left (x -y \right ) B x -B y = 0
\end{equation}
Looking at the above PDE shows the
following are all the terms with \(\{x, y\}\) in them. \[
\{x, y, \cos \left (x -y \right ), \sin \left (x -y \right )\}
\]
The following substitution is now made to
be able to collect on all terms with \(\{x, y\}\) in them \[
\{x = v_{1}, y = v_{2}, \cos \left (x -y \right ) = v_{3}, \sin \left (x -y \right ) = v_{4}\}
\]
The above PDE (6E) now becomes \begin{equation}
\tag{7E} -A v_{3} v_{1}^{2}-B v_{3} v_{1} v_{2}+v_{3} C v_{1}^{2}-v_{4} B v_{1}-B v_{2} = 0
\end{equation}
Collecting the above on the terms \(v_i\) introduced, and these are \[
\{v_{1}, v_{2}, v_{3}, v_{4}\}
\]
Equation (7E) now
becomes \begin{equation}
\tag{8E} \left (-A +C \right ) v_{1}^{2} v_{3}-B v_{3} v_{1} v_{2}-v_{4} B v_{1}-B v_{2} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the following equations to solve
\begin{align*} -B&=0\\ -A +C&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} A&=C\\ B&=0\\ C&=C \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= 1 \\
\eta &= 1 \\
\end{align*}
The next step is to determine the canonical coordinates \(R,S\) . The canonical
coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a
quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\) . Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\) . Therefore
\begin{align*} \frac {dy}{dx} &= \frac {\eta }{\xi }\\ &= \frac {1}{1}\\ &= 1 \end{align*}
This is easily solved to give
\begin{align*} y = x +c_1 \end{align*}
Where now the coordinate \(R\) is taken as the constant of integration. Hence
\begin{align*} R &= -x +y \end{align*}
And \(S\) is found from
\begin{align*} dS &= \frac {dx}{\xi } \\ &= \frac {dx}{1} \end{align*}
Integrating gives
\begin{align*} S &= \int { \frac {dx}{T}}\\ &= x \end{align*}
Where the constant of integration is set to zero as we just need one solution. Now that \(R,S\)
are found, we need to setup the ode in these coordinates. This is done by evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{x} + \omega (x,y) S_{y} }{ R_{x} + \omega (x,y) R_{y} }\tag {2} \end{align*}
Where in the above \(R_{x},R_{y},S_{x},S_{y}\) are all partial derivatives and \(\omega (x,y)\) is the right hand side of the original ode
given by
\begin{align*} \omega (x,y) &= -\sin \left (x -y \right ) \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{x} &= -1\\ R_{y} &= 1\\ S_{x} &= 1\\ S_{y} &= 0 \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= -\frac {1}{1+\sin \left (x -y \right )}\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of \(R,S\)
from the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= -\frac {1}{1-\sin \left (R \right )} \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\) .
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\) , then we only need to integrate \(f(R)\) .
\begin{align*} \int {dS} &= \int {\frac {1}{-1+\sin \left (R \right )}\, dR}\\ S \left (R \right ) &= \frac {2}{\tan \left (\frac {R}{2}\right )-1} + c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(x,y\) coordinates. This results
in
\begin{align*} x = \frac {2}{-\tan \left (\frac {x}{2}-\frac {y}{2}\right )-1}+c_2 \end{align*}
The following diagram shows solution curves of the original ode and how they transform in the
canonical coordinates space using the mapping shown.
Original ode in \(x,y\) coordinates
Canonical coordinates
transformation
ODE in canonical coordinates \((R,S)\)
\( \frac {dy}{dx} = -\sin \left (x -y \right )\)
\( \frac {d S}{d R} = -\frac {1}{1-\sin \left (R \right )}\)
\(\!\begin {aligned} R&= -x +y\\ S&= x \end {aligned} \)
Simplifying the above gives
\begin{align*}
x &= -\frac {2}{1+\tan \left (\frac {x}{2}-\frac {y}{2}\right )}+c_2 \\
\end{align*}
Solving for \(y\) gives \begin{align*}
y &= x +2 \arctan \left (\frac {c_2 -x -2}{c_2 -x}\right ) \\
\end{align*}
Figure 2.146: Slope field \(y^{\prime }+\sin \left (x -y\right ) = 0\)
Summary of solutions found
\begin{align*}
y &= x +2 \arctan \left (\frac {c_2 -x -2}{c_2 -x}\right ) \\
\end{align*}
2.1.59.4 ✓ Maple. Time used: 0.011 (sec). Leaf size: 23
ode := diff ( y ( x ), x )+ sin ( x - y ( x )) = 0;
dsolve ( ode , y ( x ), singsol=all);
\[
y = x +2 \arctan \left (\frac {c_1 -x -2}{c_1 -x}\right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1 st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE, diff(y(x),x) = 1, y(x)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )+\sin \left (-y \left (x \right )+x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\sin \left (-y \left (x \right )+x \right ) \end {array} \]
2.1.59.5 ✓ Mathematica. Time used: 0.131 (sec). Leaf size: 200
ode = D [ y [ x ], x ]- Sin [ y [ x ]- x ]==0;
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\[
\text {Solve}\left [\int _1^x\exp \left (\int _1^{K[2]-y(x)}\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \sin (K[2]-y(x))dK[2]+\int _1^{y(x)}\left (\exp \left (\int _1^{x-K[3]}\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right )-\int _1^x\left (\exp \left (\int _1^{K[2]-K[3]}\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \sin (K[2]-K[3]) \left (\frac {2}{\tan \left (\frac {1}{2} (K[2]-K[3])\right )+1}-1\right )-\exp \left (\int _1^{K[2]-K[3]}\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \cos (K[2]-K[3])\right )dK[2]\right )dK[3]=c_1,y(x)\right ]
\]
2.1.59.6 ✓ Sympy. Time used: 1.050 (sec). Leaf size: 15
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(sin(x - y(x)) + Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
y{\left (x \right )} = x + 2 \operatorname {atan}{\left (\frac {C_{1} + x + 2}{C_{1} + x} \right )}
\]