2.1.69 Problem 69

2.1.69.1 second order ode missing x
2.1.69.2 Maple
2.1.69.3 Mathematica
2.1.69.4 Sympy

Internal problem ID [10055]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 69
Date solved : Monday, December 08, 2025 at 07:12:42 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.1.69.1 second order ode missing x

7.163 (sec)

\begin{align*} a y^{2} y^{\prime \prime }+b y^{2}&=c \\ \end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}

Then

\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}

Hence the ode becomes

\begin{align*} a \,y^{2} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+b \,y^{2} = c \end{align*}

Which is now solved as first order ode for \(p(y)\).

Entering first order ode separable solverThe ode

\begin{equation} p^{\prime } = -\frac {b \,y^{2}-c}{a \,y^{2} p} \end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }&= -\frac {b \,y^{2}-c}{a \,y^{2} p}\\ &= f(y) g(p) \end{align*}

Where

\begin{align*} f(y) &= -\frac {b \,y^{2}-c}{a \,y^{2}}\\ g(p) &= \frac {1}{p} \end{align*}

Integrating gives

\begin{align*} \int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy} \\ \int { p\,dp} &= \int { -\frac {b \,y^{2}-c}{a \,y^{2}} \,dy} \\ \end{align*}
\[ \frac {p^{2}}{2}=\frac {-b \,y^{2}-c}{a y}+c_1 \]
Simplifying the above gives
\begin{align*} \frac {p^{2}}{2} &= \frac {c_1 a y -b \,y^{2}-c}{a y} \\ \end{align*}
Solving for \(p\) gives
\begin{align*} p &= \frac {\sqrt {2}\, \sqrt {a y \left (c_1 a y -b \,y^{2}-c \right )}}{a y} \\ p &= -\frac {\sqrt {2}\, \sqrt {a y \left (c_1 a y -b \,y^{2}-c \right )}}{a y} \\ \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = \frac {\sqrt {2}\, \sqrt {a y \left (c_1 a y-b y^{2}-c \right )}}{a y} \end{align*}

Entering first order ode autonomous solverUnable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

\[ \int _{}^{y}\frac {a \tau \sqrt {2}}{2 \sqrt {a \tau \left (c_1 a \tau -b \,\tau ^{2}-c \right )}}d \tau = x +c_2 \]
Singular solutions are found by solving
\begin{align*} \frac {\sqrt {2}\, \sqrt {a y \left (c_1 a y -b \,y^{2}-c \right )}}{a y}&= 0 \end{align*}

for \(y\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

\begin{align*} y = \frac {c_1 a +\sqrt {c_1^{2} a^{2}-4 b c}}{2 b}\\ y = -\frac {-c_1 a +\sqrt {c_1^{2} a^{2}-4 b c}}{2 b} \end{align*}

For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is

\begin{align*} y^{\prime } = -\frac {\sqrt {2}\, \sqrt {a y \left (c_1 a y-b y^{2}-c \right )}}{a y} \end{align*}

Entering first order ode autonomous solverUnable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

\[ \int _{}^{y}-\frac {a \tau \sqrt {2}}{2 \sqrt {a \tau \left (c_1 a \tau -b \,\tau ^{2}-c \right )}}d \tau = x +c_3 \]
Singular solutions are found by solving
\begin{align*} -\frac {\sqrt {2}\, \sqrt {a y \left (c_1 a y -b \,y^{2}-c \right )}}{a y}&= 0 \end{align*}

for \(y\). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

\begin{align*} y = \frac {c_1 a +\sqrt {c_1^{2} a^{2}-4 b c}}{2 b}\\ y = -\frac {-c_1 a +\sqrt {c_1^{2} a^{2}-4 b c}}{2 b} \end{align*}

The solution

\[ y = \frac {c_1 a +\sqrt {c_1^{2} a^{2}-4 b c}}{2 b} \]
was found not to satisfy the ode or the IC. Hence it is removed. The solution
\[ y = -\frac {-c_1 a +\sqrt {c_1^{2} a^{2}-4 b c}}{2 b} \]
was found not to satisfy the ode or the IC. Hence it is removed.

Summary of solutions found

\begin{align*} \int _{}^{y}-\frac {a \tau \sqrt {2}}{2 \sqrt {a \tau \left (c_1 a \tau -b \,\tau ^{2}-c \right )}}d \tau &= x +c_3 \\ \int _{}^{y}\frac {a \tau \sqrt {2}}{2 \sqrt {a \tau \left (c_1 a \tau -b \,\tau ^{2}-c \right )}}d \tau &= x +c_2 \\ \end{align*}
2.1.69.2 Maple. Time used: 0.015 (sec). Leaf size: 76
ode:=a*y(x)^2*diff(diff(y(x),x),x)+b*y(x)^2 = c; 
dsolve(ode,y(x), singsol=all);
                                                                                  
                                                                                  
 
\begin{align*} a \int _{}^{y}\frac {\textit {\_a}}{\sqrt {\textit {\_a} a \left (c_1 \textit {\_a} a -2 b \,\textit {\_a}^{2}-2 c \right )}}d \textit {\_a} -x -c_2 &= 0 \\ -a \int _{}^{y}\frac {\textit {\_a}}{\sqrt {\textit {\_a} a \left (c_1 \textit {\_a} a -2 b \,\textit {\_a}^{2}-2 c \right )}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
   -> Computing symmetries using: way = 3 
   -> Computing symmetries using: way = exp_sym 
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)+(_a^2*b-c)/_a^2/a = 0, 
_b(_a) 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying 1st order linear 
   trying Bernoulli 
   <- Bernoulli successful 
<- differential order: 2; canonical coordinates successful 
<- differential order 2; missing variables successful
 
2.1.69.3 Mathematica. Time used: 0.495 (sec). Leaf size: 346
ode=a*y[x]^2*D[y[x],{x,2}]+b*y[x]^2==c; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-\frac {\left (\sqrt {-16 b c+a^2 c_1{}^2}-a c_1\right ) \left (\sqrt {-16 b c+a^2 c_1{}^2}+a c_1\right ){}^2 \left (1+\frac {4 b y(x)}{\sqrt {-16 b c+a^2 c_1{}^2}-a c_1}\right ) \left (1-\frac {4 b y(x)}{\sqrt {-16 b c+a^2 c_1{}^2}+a c_1}\right ) \left (E\left (i \text {arcsinh}\left (2 \sqrt {\frac {b}{\sqrt {a^2 c_1{}^2-16 b c}-a c_1}} \sqrt {y(x)}\right )|\frac {a c_1-\sqrt {a^2 c_1{}^2-16 b c}}{a c_1+\sqrt {a^2 c_1{}^2-16 b c}}\right )-\operatorname {EllipticF}\left (i \text {arcsinh}\left (2 \sqrt {\frac {b}{\sqrt {a^2 c_1{}^2-16 b c}-a c_1}} \sqrt {y(x)}\right ),\frac {a c_1-\sqrt {a^2 c_1{}^2-16 b c}}{a c_1+\sqrt {a^2 c_1{}^2-16 b c}}\right )\right ){}^2}{16 b^3 y(x) \left (-\frac {2 \left (b y(x)^2+c\right )}{a y(x)}+c_1\right )}=(x+c_2){}^2,y(x)\right ] \]
2.1.69.4 Sympy. Time used: 19.554 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(a*y(x)**2*Derivative(y(x), (x, 2)) + b*y(x)**2 - c,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {C_{1} - \frac {2 \left (u b + \frac {c}{u}\right )}{a}}}\, du = C_{2} + x, \ \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {C_{1} - \frac {2 \left (u b + \frac {c}{u}\right )}{a}}}\, du = C_{2} - x\right ] \]