1.70 problem 70

1.70.1 Maple step by step solution

Internal problem ID [7114]
Internal file name [OUTPUT/6100_Sunday_June_05_2022_04_21_54_PM_34240908/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 70.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadrature]]

\[ \boxed {a y y^{\prime \prime }+b y=0} \] The ode \begin {align*} a y y^{\prime \prime }+b y = 0 \end {align*}

is factored to \begin {align*} y \left (y^{\prime \prime } a +b \right ) = 0 \end {align*}

Which gives the following equations \begin {align*} y = 0\tag {1} \\ y^{\prime \prime } a +b = 0\tag {2} \\ \end {align*}

Each of the above equations is now solved.

Solving ODE (1) Since \(y = 0\), is missing derivative in \(y\) then it is an algebraic equation. Solving for \(y\). \begin {align*} \end {align*}

Solving ODE (2) The ODE can be written as \[ y^{\prime \prime } = -\frac {b}{a} \] Integrating once gives \[ y^{\prime }= -\frac {b x}{a} + c_{1} \] Integrating again gives \[ y= -\frac {b \,x^{2}}{2 a} + c_{1} x + c_{2} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {b \,x^{2}}{2 a}+c_{1} x +c_{2} \\ \end{align*}

Verification of solutions

\[ y = -\frac {b \,x^{2}}{2 a}+c_{1} x +c_{2} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {b \,x^{2}}{2 a}+c_{1} x +c_{2} \\ \end{align*}

Verification of solutions

\[ y = -\frac {b \,x^{2}}{2 a}+c_{1} x +c_{2} \] Verified OK.

1.70.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & a y y^{\prime \prime }+b y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {b}{a} \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}=0 \\ \bullet & {} & \textrm {Use quadratic formula to solve for}\hspace {3pt} r \\ {} & {} & r =\frac {0\pm \left (\sqrt {0}\right )}{2} \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (x \right )=1 \\ \bullet & {} & \textrm {Repeated root, multiply}\hspace {3pt} y_{1}\left (x \right )\hspace {3pt}\textrm {by}\hspace {3pt} x \hspace {3pt}\textrm {to ensure linear independence}\hspace {3pt} \\ {} & {} & y_{2}\left (x \right )=x \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right )+y_{p}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y=c_{1} +c_{2} x +y_{p}\left (x \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (x \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} y_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (x \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [y_{p}\left (x \right )=-y_{1}\left (x \right ) \left (\int \frac {y_{2}\left (x \right ) f \left (x \right )}{W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )}d x \right )+y_{2}\left (x \right ) \left (\int \frac {y_{1}\left (x \right ) f \left (x \right )}{W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )}d x \right ), f \left (x \right )=-\frac {b}{a}\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )=\left [\begin {array}{cc} 1 & x \\ 0 & 1 \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )=1 \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} y_{p}\left (x \right ) \\ {} & {} & y_{p}\left (x \right )=-\frac {b \left (\left (\int 1d x \right ) x -\left (\int x d x \right )\right )}{a} \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y_{p}\left (x \right )=-\frac {b \,x^{2}}{2 a} \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y=c_{1} +c_{2} x -\frac {b \,x^{2}}{2 a} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
<- quadrature successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(a*y(x)*diff(y(x),x$2)+b*y(x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= -\frac {b \,x^{2}}{2 a}+c_{1} x +c_{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 28

DSolve[a*y[x]*y''[x]+b*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to 0 \\ y(x)\to -\frac {b x^2}{2 a}+c_2 x+c_1 \\ \end{align*}