Internal
problem
ID
[7783]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
89
Date
solved
:
Tuesday, October 22, 2024 at 02:29:51 PM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
1.91.3 Maple dsolve solution
Solving time : 0.029
(sec)
Leaf size : 147
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*y(x) = 2*x,
y(x),singsol=all)
\[
y = \frac {-\operatorname {WhittakerM}\left (\frac {i \sqrt {2}\, c_1}{8}+1, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right ) \left (6+i \sqrt {2}\, c_1 \right )+8 c_2 \operatorname {WhittakerW}\left (\frac {i \sqrt {2}\, c_1}{8}+1, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )+2 \left (1-i \left (x^{2}-\frac {c_1}{2}\right ) \sqrt {2}\right ) \left (c_2 \operatorname {WhittakerW}\left (\frac {i \sqrt {2}\, c_1}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )+\operatorname {WhittakerM}\left (\frac {i \sqrt {2}\, c_1}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )\right )}{2 x \left (c_2 \operatorname {WhittakerW}\left (\frac {i \sqrt {2}\, c_1}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )+\operatorname {WhittakerM}\left (\frac {i \sqrt {2}\, c_1}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )\right )}
\]
1.91.4 Mathematica DSolve solution
Solving time : 45.186
(sec)
Leaf size : 318
DSolve[{D[y[x],{x,2}]+D[y[x],x]*y[x]==2*x,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {\sqrt [4]{2} \left (\sqrt [4]{2} x \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (-\sqrt {2} c_1-2\right ),i \sqrt [4]{2} x\right )+2 i \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (2-\sqrt {2} c_1\right ),i \sqrt [4]{2} x\right )+c_2 \left (2 \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1+2\right ),\sqrt [4]{2} x\right )-\sqrt [4]{2} x \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )\right )\right )}{\operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (-\sqrt {2} c_1-2\right ),i \sqrt [4]{2} x\right )+c_2 \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )} \\
y(x)\to \sqrt {2} x-\frac {2 \sqrt [4]{2} \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1+2\right ),\sqrt [4]{2} x\right )}{\operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )} \\
y(x)\to \sqrt {2} x-\frac {2 \sqrt [4]{2} \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1+2\right ),\sqrt [4]{2} x\right )}{\operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )} \\
\end{align*}