2.1.16 Problem 16
Internal
problem
ID
[10375]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
16
Date
solved
:
Monday, December 08, 2025 at 08:15:23 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
2.1.16.1 second order ode missing y
0.578 (sec)
\begin{align*}
{y^{\prime \prime }}^{2}+y^{\prime }&=1 \\
\end{align*}
Entering second order ode missing \(y\) solverThis is second order ode with missing dependent
variable \(y\). Let \begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} {u^{\prime }\left (x \right )}^{2}+u \left (x \right )-1 = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Entering first order ode dAlembert solverLet \(p=u^{\prime }\left (x \right )\) the ode becomes
\begin{align*} p^{2}+u -1 = 0 \end{align*}
Solving for \(u \left (x \right )\) from the above results in
\begin{align*}
\tag{1} u \left (x \right ) &= -p^{2}+1 \\
\end{align*}
This has the form \begin{align*} u=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=u'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(u \left (x \right )=x f + g\) to (1A) shows that
\begin{align*} f &= 0\\ g &= -p^{2}+1 \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p = -2 p p^{\prime }\left (x \right )
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=0 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} u \left (x \right ) = 1 \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = -{\frac {1}{2}}
\end{equation}
This ODE is now solved for \(p \left (x \right )\).
No inversion is needed.
Since the ode has the form \(p^{\prime }\left (x \right )=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dp} &= \int {-{\frac {1}{2}}\, dx}\\ p \left (x \right ) &= -\frac {x}{2} + c_1 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
u \left (x \right ) &= -\frac {1}{4} x^{2}+c_1 x -c_1^{2}+1 \\
\end{align*}
Simplifying the above gives \begin{align*}
u \left (x \right ) &= 1 \\
u \left (x \right ) &= -\frac {\left (x -2 c_1 +2\right ) \left (x -2 c_1 -2\right )}{4} \\
\end{align*}
In summary, these
are the solution found for \(y\) \begin{align*}
u \left (x \right ) &= 1 \\
u \left (x \right ) &= -\frac {\left (x -2 c_1 +2\right ) \left (x -2 c_1 -2\right )}{4} \\
\end{align*}
For solution \(u \left (x \right ) = 1\), since \(u=y^{\prime }\) then we now have a new first order ode to solve
which is \begin{align*} y^{\prime } = 1 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {1\, dx}\\ y &= x + c_2 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= x +c_2 \\
\end{align*}
For solution \(u \left (x \right ) = -\frac {\left (x -2 c_1 +2\right ) \left (x -2 c_1 -2\right )}{4}\), since \(u=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = -\frac {\left (x -2 c_1 +2\right ) \left (x -2 c_1 -2\right )}{4} \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-\frac {\left (2 c_1 -x +2\right ) \left (2 c_1 -x -2\right )}{4}\, dx}\\ y &= -\frac {x^{3}}{12}+\frac {c_1 \,x^{2}}{2}-\frac {\left (2 c_1 +2\right ) \left (2 c_1 -2\right ) x}{4} + c_3 \end{align*}
\begin{align*} y&= -\frac {1}{12} x^{3}+\frac {1}{2} c_1 \,x^{2}-c_1^{2} x +x +c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= -\frac {1}{12} x^{3}+\frac {1}{2} c_1 \,x^{2}-c_1^{2} x +x +c_3 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= x +c_2 \\
y &= -\frac {1}{12} x^{3}+\frac {1}{2} c_1 \,x^{2}-c_1^{2} x +x +c_3 \\
\end{align*}
2.1.16.2 ✓ Maple. Time used: 0.055 (sec). Leaf size: 30
ode:=diff(diff(y(x),x),x)^2+diff(y(x),x) = 1;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= x +c_{1} \\
y &= -\frac {1}{12} x^{3}+\frac {1}{2} c_{1} x^{2}-x \,c_{1}^{2}+x +c_{2} \\
\end{align*}
Maple trace
Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve e\
ach resulting ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE, diff(diff(diff(y(x),x),x),x)+1/2, y(x)
*** Sublevel 4 ***
Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
<- 2nd order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful
-> Calling odsolve with the ODE, diff(y(x),x) = 1, y(x), singsol = none
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )^{2}+\frac {d}{d x}y \left (x \right )=1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}u \left (x \right )\right )^{2}+u \left (x \right )=1 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}u \left (x \right )=\sqrt {1-u \left (x \right )}, \frac {d}{d x}u \left (x \right )=-\sqrt {1-u \left (x \right )}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}u \left (x \right )=\sqrt {1-u \left (x \right )} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{\sqrt {1-u \left (x \right )}}=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{\sqrt {1-u \left (x \right )}}d x =\int 1d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -2 \sqrt {1-u \left (x \right )}=x +\textit {\_C1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {1}{4} \textit {\_C1}^{2}-\frac {1}{2} \textit {\_C1} x -\frac {1}{4} x^{2}+1 \\ {} & \circ & \textrm {Simplify}\hspace {3pt} \\ {} & {} & u \left (x \right )=-\frac {\left (x +\textit {\_C1} +2\right ) \left (x +\textit {\_C1} -2\right )}{4} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}u \left (x \right )=-\sqrt {1-u \left (x \right )} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{\sqrt {1-u \left (x \right )}}=-1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{\sqrt {1-u \left (x \right )}}d x =\int \left (-1\right )d x +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -2 \sqrt {1-u \left (x \right )}=-x +\textit {\_C1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {1}{4} \textit {\_C1}^{2}+\frac {1}{2} \textit {\_C1} x -\frac {1}{4} x^{2}+1 \\ {} & \circ & \textrm {Simplify}\hspace {3pt} \\ {} & {} & u \left (x \right )=-\frac {\left (x -\textit {\_C1} +2\right ) \left (x -\textit {\_C1} -2\right )}{4} \\ {} & \circ & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & u \left (x \right )=-\frac {\left (x +\textit {\_C1} +2\right ) \left (x +\textit {\_C1} -2\right )}{4} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{u \left (x \right )=-\frac {\left (x +\mathit {C1} +2\right ) \left (x +\mathit {C1} -2\right )}{4}\right \} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\frac {\left (x +\mathit {C1} +2\right ) \left (x +\mathit {C1} -2\right )}{4} \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\frac {\left (x +\mathit {C1} +2\right ) \left (x +\mathit {C1} -2\right )}{4} \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int -\frac {\left (x +\mathit {C1} +2\right ) \left (x +\mathit {C1} -2\right )}{4}d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=-\frac {x^{3}}{12}-\frac {\mathit {C1} \,x^{2}}{4}-\frac {\left (\mathit {C1} +2\right ) \left (\mathit {C1} -2\right ) x}{4}+\mathit {C2} \end {array} \]
2.1.16.3 ✓ Mathematica. Time used: 0.016 (sec). Leaf size: 67
ode=(D[y[x],{x,2}])^2+D[y[x],x]==1;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to -\frac {x^3}{12}-\frac {c_1 x^2}{4}+x-\frac {c_1{}^2 x}{4}+c_2\\ y(x)&\to -\frac {x^3}{12}+\frac {c_1 x^2}{4}+x-\frac {c_1{}^2 x}{4}+c_2 \end{align*}
2.1.16.4 ✓ Sympy. Time used: 0.620 (sec). Leaf size: 24
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(Derivative(y(x), x) + Derivative(y(x), (x, 2))**2 - 1,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1} - \frac {C_{2}^{2} x}{4} + \frac {C_{2} x^{2}}{4} - \frac {x^{3}}{12} + x
\]