2.1.17 Problem 17
Internal
problem
ID
[10376]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
17
Date
solved
:
Monday, December 08, 2025 at 08:23:26 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
2.1.17.1 second order ode missing x
4.677 (sec)
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode.
Solved by reduction of order by using substitution which makes the dependent variable \(y\) an
independent variable. Using \begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+p \left (y \right )^{2} = 1 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int -\frac {p}{p^{2}-1}d p &= dy\\ -\frac {\ln \left (p^{2}-1\right )}{2}&= y +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} -\frac {p^{2}-1}{p}&= 0 \end{align*}
for \(p\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p = -1\\ p = 1 \end{align*}
Solving for \(p\) gives
\begin{align*}
p &= -1 \\
p &= 1 \\
p &= \sqrt {1+{\mathrm e}^{-2 y -2 c_1}} \\
p &= -\sqrt {1+{\mathrm e}^{-2 y -2 c_1}} \\
\end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to
solve which is \begin{align*} y^{\prime } = -1 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-1\, dx}\\ y &= -x + c_2 \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 1 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {1\, dx}\\ y &= x + c_3 \end{align*}
For solution (3) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = \sqrt {1+{\mathrm e}^{-2 y-2 c_1}} \end{align*}
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int \frac {1}{\sqrt {1+{\mathrm e}^{-2 y -2 c_1}}}d y &= dx\\ \operatorname {arctanh}\left (\sqrt {1+{\mathrm e}^{-2 y -2 c_1}}\right )&= x +c_4 \end{align*}
Singular solutions are found by solving
\begin{align*} \sqrt {1+{\mathrm e}^{-2 y -2 c_1}}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {i \pi }{2}-c_1 \end{align*}
Simplifying the above gives
\begin{align*}
\operatorname {arctanh}\left (\sqrt {{\mathrm e}^{-2 y-2 c_1} \left ({\mathrm e}^{2 y+2 c_1}+1\right )}\right ) &= x +c_4 \\
y &= -\frac {i \pi }{2}-c_1 \\
\end{align*}
Solving for \(y\) gives \begin{align*}
y &= -c_1 -\frac {\ln \left (\tanh \left (x +c_4 \right )^{2}-1\right )}{2} \\
y &= -\frac {i \pi }{2}-c_1 \\
\end{align*}
For solution (4) found earlier, since \(p=y^{\prime }\) then we now
have a new first order ode to solve which is \begin{align*} y^{\prime } = -\sqrt {1+{\mathrm e}^{-2 y-2 c_1}} \end{align*}
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int -\frac {1}{\sqrt {1+{\mathrm e}^{-2 y -2 c_1}}}d y &= dx\\ -\operatorname {arctanh}\left (\sqrt {1+{\mathrm e}^{-2 y -2 c_1}}\right )&= x +c_5 \end{align*}
Singular solutions are found by solving
\begin{align*} -\sqrt {1+{\mathrm e}^{-2 y -2 c_1}}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {i \pi }{2}-c_1 \end{align*}
Simplifying the above gives
\begin{align*}
-\operatorname {arctanh}\left (\sqrt {{\mathrm e}^{-2 y-2 c_1} \left ({\mathrm e}^{2 y+2 c_1}+1\right )}\right ) &= x +c_5 \\
y &= -\frac {i \pi }{2}-c_1 \\
\end{align*}
Solving for \(y\) gives \begin{align*}
y &= -c_1 -\frac {\ln \left (\tanh \left (x +c_5 \right )^{2}-1\right )}{2} \\
y &= -\frac {i \pi }{2}-c_1 \\
\end{align*}
The solution \[
y = -\frac {i \pi }{2}-c_1
\]
was found not to satisfy the ode or
the IC. Hence it is removed.
Summary of solutions found
\begin{align*}
y &= -c_1 -\frac {\ln \left (\tanh \left (x +c_4 \right )^{2}-1\right )}{2} \\
y &= -c_1 -\frac {\ln \left (\tanh \left (x +c_5 \right )^{2}-1\right )}{2} \\
y &= c_2 -x \\
y &= x +c_3 \\
\end{align*}
2.1.17.2 second order ode missing y
0.610 (sec)
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*}
Entering second order ode missing \(y\) solverThis is second order ode with missing dependent
variable \(y\). Let \begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} u^{\prime }\left (x \right )+u \left (x \right )^{2}-1 = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int \frac {1}{-u^{2}+1}d u &= dx\\ \operatorname {arctanh}\left (u \right )&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} -u^{2}+1&= 0 \end{align*}
for \(u \left (x \right )\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} u \left (x \right ) = -1\\ u \left (x \right ) = 1 \end{align*}
Solving for \(u \left (x \right )\) gives
\begin{align*}
u \left (x \right ) &= -1 \\
u \left (x \right ) &= 1 \\
u \left (x \right ) &= \tanh \left (x +c_1 \right ) \\
\end{align*}
In summary, these are the solution found for \(y\) \begin{align*}
u \left (x \right ) &= -1 \\
u \left (x \right ) &= 1 \\
u \left (x \right ) &= \tanh \left (x +c_1 \right ) \\
\end{align*}
For solution \(u \left (x \right ) = -1\), since \(u=y^{\prime }\) then we
now have a new first order ode to solve which is \begin{align*} y^{\prime } = -1 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-1\, dx}\\ y &= -x + c_2 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= c_2 -x \\
\end{align*}
For solution \(u \left (x \right ) = 1\), since \(u=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = 1 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {1\, dx}\\ y &= x + c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= x +c_3 \\
\end{align*}
For solution \(u \left (x \right ) = \tanh \left (x +c_1 \right )\), since \(u=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = \tanh \left (x +c_1 \right ) \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\tanh \left (x +c_1 \right )\, dx}\\ y &= \ln \left (\cosh \left (x +c_1 \right )\right ) + c_4 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \ln \left (\cosh \left (x +c_1 \right )\right )+c_4 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= c_2 -x \\
y &= x +c_3 \\
y &= \ln \left (\cosh \left (x +c_1 \right )\right )+c_4 \\
\end{align*}
7.648 (sec)
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*}
Applying change of variable \(x = \arccos \left (\tau \right )\) to the above ode results in the following new ode
\[
\left (-\tau ^{2}+1\right ) \left (\frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )\right )-\left (\frac {d}{d \tau }y \left (\tau \right )\right ) \tau +\left (\frac {d}{d \tau }y \left (\tau \right )\right )^{2} \left (-\tau ^{2}+1\right ) = 1
\]
Which is now
solved for \(y \left (\tau \right )\). Entering second order ode missing \(y\) solverThis is second order ode with missing
dependent variable \(y \left (\tau \right )\). Let \begin{align*} u(\tau ) &= \frac {d}{d \tau }y \left (\tau \right ) \end{align*}
Then
\begin{align*} u'(\tau ) &= \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right ) \end{align*}
Hence the ode becomes
\begin{align*} \left (-\tau ^{2}+1\right ) \left (\frac {d}{d \tau }u \left (\tau \right )\right )-u \left (\tau \right ) \tau +u \left (\tau \right )^{2} \left (-\tau ^{2}+1\right )-1 = 0 \end{align*}
Which is now solved for \(u(\tau )\) as first order ode.
Entering first order ode riccati solverIn canonical form the ODE is
\begin{align*} u' &= F(\tau ,u)\\ &= -\frac {\tau ^{2} u^{2}+u \tau -u^{2}+1}{\tau ^{2}-1} \end{align*}
This is a Riccati ODE. Comparing the ODE to solve
\[
u' = -\frac {\tau ^{2} u^{2}}{\tau ^{2}-1}-\frac {u \tau }{\tau ^{2}-1}+\frac {u^{2}}{\tau ^{2}-1}-\frac {1}{\tau ^{2}-1}
\]
With Riccati ODE standard form \[ u' = f_0(\tau )+ f_1(\tau )u+f_2(\tau )u^{2} \]
Shows
that \(f_0(\tau )=-\frac {1}{\tau ^{2}-1}\), \(f_1(\tau )=-\frac {\tau }{\tau ^{2}-1}\) and \(f_2(\tau )=-1\). Let \begin{align*} u &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{-u} \tag {1} \end{align*}
Using the above substitution in the given ODE results (after some simplification) in a second
order ODE to solve for \(u(x)\) which is
\begin{align*} f_2 u''(\tau ) -\left ( f_2' + f_1 f_2 \right ) u'(\tau ) + f_2^2 f_0 u(\tau ) &= 0 \tag {2} \end{align*}
But
\begin{align*} f_2' &=0\\ f_1 f_2 &=\frac {\tau }{\tau ^{2}-1}\\ f_2^2 f_0 &=-\frac {1}{\tau ^{2}-1} \end{align*}
Substituting the above terms back in equation (2) gives
\[
-\frac {d^{2}}{d \tau ^{2}}u \left (\tau \right )-\frac {\tau \left (\frac {d}{d \tau }u \left (\tau \right )\right )}{\tau ^{2}-1}-\frac {u \left (\tau \right )}{\tau ^{2}-1} = 0
\]
Entering second order change of variable
on \(x\) method 2 solverIn normal form the ode \begin{align*} -\frac {d^{2}u}{d \tau ^{2}}-\frac {\tau \left (\frac {d u}{d \tau }\right )}{\tau ^{2}-1}-\frac {u}{\tau ^{2}-1} = 0\tag {1} \end{align*}
Becomes
\begin{align*} \frac {d^{2}u}{d \tau ^{2}}+p \left (\tau \right ) \left (\frac {d u}{d \tau }\right )+q \left (\tau \right ) u&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (\tau \right )&=\frac {\tau }{\tau ^{2}-1}\\ q \left (\tau \right )&=\frac {1}{\tau ^{2}-1} \end{align*}
Applying change of variables \(\tau = g \left (\tau \right )\) to (2) gives
\begin{align*} \frac {d^{2}}{d \tau ^{2}}u \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }u \left (\tau \right )\right )+q_{1} u \left (\tau \right )&=0 \tag {3} \end{align*}
Where \(\tau \) is the new independent variable, and
\begin{align*} p_{1} \left (\tau \right ) &=\frac {\frac {d^{2}}{d \tau ^{2}}\tau \left (\tau \right )+p \left (\tau \right ) \left (\frac {d}{d \tau }\tau \left (\tau \right )\right )}{\left (\frac {d}{d \tau }\tau \left (\tau \right )\right )^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (\tau \right )}{\left (\frac {d}{d \tau }\tau \left (\tau \right )\right )^{2}}\tag {5} \end{align*}
Let \(p_{1} = 0\). Eq (4) simplifies to
\begin{align*} \frac {d^{2}}{d \tau ^{2}}\tau \left (\tau \right )+p \left (\tau \right ) \left (\frac {d}{d \tau }\tau \left (\tau \right )\right )&=0 \end{align*}
This ode is solved resulting in
\begin{align*} \tau &= \int {\mathrm e}^{-\int p \left (\tau \right )d \tau }d \tau \\ &= \int {\mathrm e}^{-\int \frac {\tau }{\tau ^{2}-1}d \tau }d \tau \\ &= \int e^{-\frac {\ln \left (\tau -1\right )}{2}-\frac {\ln \left (\tau +1\right )}{2}} \,d\tau \\ &= \int \frac {1}{\sqrt {\tau -1}\, \sqrt {\tau +1}}d \tau \\ &= \frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\tag {6} \end{align*}
Using (6) to evaluate \(q_{1}\) from (5) gives
\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (\tau \right )}{\left (\frac {d}{d \tau }\tau \left (\tau \right )\right )^{2}}\\ &= \frac {\frac {1}{\tau ^{2}-1}}{\frac {1}{\left (\tau +1\right ) \left (\tau -1\right )}}\\ &= 1\tag {7} \end{align*}
Substituting the above in (3) and noting that now \(p_{1} = 0\) results in
\begin{align*} \frac {d^{2}}{d \tau ^{2}}u \left (\tau \right )+q_{1} u \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}u \left (\tau \right )+u \left (\tau \right )&=0 \end{align*}
The above ode is now solved for \(u \left (\tau \right )\).Entering second order linear constant coefficient ode
solver
This is second order with constant coefficients homogeneous ODE. In standard form the
ODE is
\[ A u''(\tau ) + B u'(\tau ) + C u(\tau ) = 0 \]
Where in the above \(A=1, B=0, C=1\). Let the solution be \(u \left (\tau \right )=e^{\lambda \tau }\). Substituting this into the ODE
gives \[ \lambda ^{2} {\mathrm e}^{\tau \lambda }+{\mathrm e}^{\tau \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda \tau }\)
gives \[ \lambda ^{2}+1 = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the
general solution form.Using the quadratic formula \[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=0, C=1\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (1\right )}\\ &= \pm i \end{align*}
Hence
\begin{align*} \lambda _1 &= + i\\ \lambda _2 &= - i \end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= i \\
\lambda _2 &= -i \\
\end{align*}
Since roots are complex conjugate of each others, then let the roots be \[
\lambda _{1,2} = \alpha \pm i \beta
\]
Where \(\alpha =0\) and \(\beta =1\). Therefore the final solution, when using Euler relation, can be written as \[
u \left (\tau \right ) = e^{\alpha \tau } \left ( c_1 \cos (\beta \tau ) + c_2 \sin (\beta \tau ) \right )
\]
Which
becomes \[
u \left (\tau \right ) = e^{0}\left (c_1 \cos \left (\tau \right )+c_2 \sin \left (\tau \right )\right )
\]
Or \[
u \left (\tau \right ) = c_1 \cos \left (\tau \right )+c_2 \sin \left (\tau \right )
\]
The above solution is now transformed back to \(u\) using (6) which results in \[
u = c_1 \cos \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_2 \sin \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )
\]
Taking
derivative gives \begin{equation}
\tag{4} u^{\prime }\left (\tau \right ) = -c_1 \left (\frac {\ln \left (\tau +\sqrt {\tau ^{2}-1}\right ) \tau }{\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \sqrt {\tau -1}\, \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \left (\tau -1\right )^{{3}/{2}} \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \sqrt {\tau -1}\, \left (\tau +1\right )^{{3}/{2}}}+\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \left (1+\frac {\tau }{\sqrt {\tau ^{2}-1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\tau +\sqrt {\tau ^{2}-1}\right )}\right ) \sin \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_2 \left (\frac {\ln \left (\tau +\sqrt {\tau ^{2}-1}\right ) \tau }{\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \sqrt {\tau -1}\, \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \left (\tau -1\right )^{{3}/{2}} \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \sqrt {\tau -1}\, \left (\tau +1\right )^{{3}/{2}}}+\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \left (1+\frac {\tau }{\sqrt {\tau ^{2}-1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\tau +\sqrt {\tau ^{2}-1}\right )}\right ) \cos \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )
\end{equation}
Substituting equations (3,4) into (1) results in \begin{align*}
u &= \frac {-u'}{f_2 u} \\
u &= \frac {-u'}{-u} \\
u &= \frac {-c_1 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_2 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (c_1 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_2 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )} \\
\end{align*}
Doing change of constants, the
above solution becomes \[
u = \frac {-\left (\frac {\ln \left (\tau +\sqrt {\tau ^{2}-1}\right ) \tau }{\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \sqrt {\tau -1}\, \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \left (\tau -1\right )^{{3}/{2}} \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \sqrt {\tau -1}\, \left (\tau +1\right )^{{3}/{2}}}+\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \left (1+\frac {\tau }{\sqrt {\tau ^{2}-1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\tau +\sqrt {\tau ^{2}-1}\right )}\right ) \sin \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \left (\frac {\ln \left (\tau +\sqrt {\tau ^{2}-1}\right ) \tau }{\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \sqrt {\tau -1}\, \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \left (\tau -1\right )^{{3}/{2}} \sqrt {\tau +1}}-\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{2 \sqrt {\tau -1}\, \left (\tau +1\right )^{{3}/{2}}}+\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \left (1+\frac {\tau }{\sqrt {\tau ^{2}-1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\tau +\sqrt {\tau ^{2}-1}\right )}\right ) \cos \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\cos \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\left (\tau -1\right ) \left (\tau +1\right )}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}
\]
Simplifying the above gives \begin{align*}
u &= \frac {-\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )} \\
\end{align*}
In summary, these are the solution found
for \(y \left (\tau \right )\) \begin{align*}
u &= \frac {-\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )} \\
\end{align*}
For solution \(u = \frac {-\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )}\), since \(u=y^{\prime }\left (\tau \right )\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime }\left (\tau \right ) = \frac {-\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )} \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }\left (\tau \right )=f(\tau )\), then we only need to
integrate \(f(\tau )\).
\begin{align*} \int {dy} &= \int {-\frac {\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )-c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )}\, d\tau }\\ y \left (\tau \right ) &= \int -\frac {\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )-c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )}d \tau + c_4 \end{align*}
\begin{align*} y \left (\tau \right )&= \int -\frac {\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )-c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )}d \tau +c_4 \end{align*}
In summary, these are the solution found for \((y \left (\tau \right ))\)
\begin{align*}
y \left (\tau \right ) &= \int -\frac {\sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )-c_3 \cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}\, \left (\cos \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )+c_3 \sin \left (\frac {\sqrt {\tau ^{2}-1}\, \ln \left (\tau +\sqrt {\tau ^{2}-1}\right )}{\sqrt {\tau -1}\, \sqrt {\tau +1}}\right )\right )}d \tau +c_4 \\
\end{align*}
Applying change of variable \(\tau = \cos \left (x \right )\) to the solutions
above gives \begin{align*}
y \left (x \right ) &= \int \frac {\left (\sin \left (\frac {\sqrt {\cos \left (x \right )^{2}-1}\, \ln \left (\cos \left (x \right )+\sqrt {\cos \left (x \right )^{2}-1}\right )}{\sqrt {\cos \left (x \right )-1}\, \sqrt {\cos \left (x \right )+1}}\right )-c_3 \cos \left (\frac {\sqrt {\cos \left (x \right )^{2}-1}\, \ln \left (\cos \left (x \right )+\sqrt {\cos \left (x \right )^{2}-1}\right )}{\sqrt {\cos \left (x \right )-1}\, \sqrt {\cos \left (x \right )+1}}\right )\right ) \sin \left (x \right )}{\sqrt {\cos \left (x \right )-1}\, \sqrt {\cos \left (x \right )+1}\, \left (\cos \left (\frac {\sqrt {\cos \left (x \right )^{2}-1}\, \ln \left (\cos \left (x \right )+\sqrt {\cos \left (x \right )^{2}-1}\right )}{\sqrt {\cos \left (x \right )-1}\, \sqrt {\cos \left (x \right )+1}}\right )+c_3 \sin \left (\frac {\sqrt {\cos \left (x \right )^{2}-1}\, \ln \left (\cos \left (x \right )+\sqrt {\cos \left (x \right )^{2}-1}\right )}{\sqrt {\cos \left (x \right )-1}\, \sqrt {\cos \left (x \right )+1}}\right )\right )}d x +c_4 \\
\end{align*}
2.1.17.4 ✓ Maple. Time used: 0.008 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 1;
dsolve(ode,y(x), singsol=all);
\[
y = -x -\ln \left (2\right )+\ln \left (-c_1 \,{\mathrm e}^{2 x}+c_2 \right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\left (\frac {d}{d x}y \left (x \right )\right )^{2}=1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )+u \left (x \right )^{2}=1 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=-u \left (x \right )^{2}+1 \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{-u \left (x \right )^{2}+1}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{-u \left (x \right )^{2}+1}d x =\int 1d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \mathrm {arctanh}\left (u \left (x \right )\right )=x +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\tanh \left (x +\mathit {C1} \right ) \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\tanh \left (x +\mathit {C1} \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=\tanh \left (x +\mathit {C1} \right ) \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \tanh \left (x +\mathit {C1} \right )d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\ln \left (\cosh \left (x +\mathit {C1} \right )\right )+\mathit {C2} \end {array} \]
2.1.17.5 ✓ Mathematica. Time used: 0.426 (sec). Leaf size: 45
ode=D[y[x],{x,2}]+(D[y[x],x])^2==1;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \int _1^x\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-1) (K[1]+1)}dK[1]\&\right ][c_1-K[2]]dK[2]+c_2 \end{align*}
2.1.17.6 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out