2.1.19 problem 19
Internal
problem
ID
[8502]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
19
Date
solved
:
Sunday, November 10, 2024 at 03:55:13 AM
CAS
classification
:
[[_2nd_order, _missing_y]]
Solve
\begin{align*} {y^{\prime \prime }}^{2}+y^{\prime }&=x \end{align*}
Solved as second order missing y ode
Time used: 0.503 (sec)
This is second order ode with missing dependent variable \(y\). Let
\begin{align*} p(x) &= y^{\prime } \end{align*}
Then
\begin{align*} p'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} {p^{\prime }\left (x \right )}^{2}+p \left (x \right )-x = 0 \end{align*}
Which is now solve for \(p(x)\) as first order ode. Let \(p=p^{\prime }\left (x \right )\) the ode becomes
\begin{align*} p^{2}+p -x = 0 \end{align*}
Solving for \(p \left (x \right )\) from the above results in
\begin{align*}
\tag{1} p \left (x \right ) &= -p^{2}+x \\
\end{align*}
This has the form
\begin{align*} p=xf(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=p'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(p \left (x \right )=x f + g\) to (1A) shows that
\begin{align*} f &= 1\\ g &= -p^{2} \end{align*}
Hence (2) becomes
\begin{align*} p -1 = -2 p p^{\prime }\left (x \right )\tag {2A} \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{align*} p^{\prime }\left (x \right ) = -\frac {p \left (x \right )-1}{2 p \left (x \right )}\tag {3} \end{align*}
Inverting the above ode gives
\begin{align*} \frac {d}{d p}x \left (p \right ) = -\frac {2 p}{p -1}\tag {4} \end{align*}
This ODE is now solved for \(x \left (p \right )\). Integrating gives
\begin{align*} x \left (p \right )&=\int -\frac {2 p}{p -1}d p +c_1\\ x \left (p \right )&=-2 p -2 \ln \left (p -1\right )+c_1\tag {5} \end{align*}
Now we need to eliminate \(p\) between the above solution and (1A). The first method is to solve
for \(p\) from Eq. (1A) and substitute the result into Eq. (5). The Second method is to solve for \(p\)
from Eq. (5) and substitute the result into (1A).
Eliminating \(p\) from the following two equations
\begin{align*}
x &= -2 p -2 \ln \left (p -1\right )+c_1 \\
p &= -p^{2}+x \\
\end{align*}
results in
\begin{align*}
p &= \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )+1 \\
\end{align*}
Substituting the above into Eq
(1A) and simplifying gives
\begin{align*}
p \left (x \right ) &= -\operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{2}-2 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )+x -1 \\
\end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first
order ode to solve which is
\begin{align*} y^{\prime } = -\operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{2}-2 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )+x -1 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-\operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{2}-2 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )+x -1\, dx}\\ y &= \frac {2 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{3}}{3}+3 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{2}+4 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )+\frac {x^{2}}{2}-x + c_2 \end{align*}
Will add steps showing solving for IC soon.
Summary of solutions found
\begin{align*}
y &= \frac {2 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{3}}{3}+3 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )^{2}+4 \operatorname {LambertW}\left ({\mathrm e}^{-\frac {x}{2}-1+\frac {c_1}{2}}\right )+\frac {x^{2}}{2}-x +c_2 \\
\end{align*}
Maple step by step solution
Maple trace
`Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.
*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (-_b(_a)+_a)^(1/2), _b(_a), HINT = [[1, 1]]` *** Sublevel 3 ***
symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 1]
Maple dsolve solution
Solving time : 0.113
(sec)
Leaf size : 122
dsolve(diff(diff(y(x),x),x)^2+diff(y(x),x) = x,
y(x),singsol=all)
\begin{align*}
y &= \int \left (-{\mathrm e}^{2 \operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_{1} -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_{1} -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+x \right )d x -x +c_{2} \\
y &= \frac {2 \operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-\frac {x}{2}-1}\right )^{3}}{3}+3 \operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-\frac {x}{2}-1}\right )^{2}+4 \operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-\frac {x}{2}-1}\right )+\frac {x^{2}}{2}-x +c_{2} \\
\end{align*}
Mathematica DSolve solution
Solving time : 16.306
(sec)
Leaf size : 172
DSolve[{(D[y[x],{x,2}])^2+D[y[x],x]==x,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {2}{3} W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^3+3 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^2+4 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right )+\frac {x^2}{2}-x+c_2 \\
y(x)\to \frac {2}{3} W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^3+3 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^2+4 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right )+\frac {x^2}{2}-x+c_2 \\
y(x)\to \frac {x^2}{2}-x+c_2 \\
\end{align*}