1.19 problem 19
Internal
problem
ID
[8056]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
19
Date
solved
:
Monday, October 21, 2024 at 04:44:56 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
Solve
\begin{align*} {y^{\prime \prime }}^{2}+y^{\prime }&=x \end{align*}
1.19.1 Solved as second order missing y ode
Time used: 0.474 (sec)
This is second order ode with missing dependent variable \(y\). Let
\begin{align*} p(x) &= y^{\prime } \end{align*}
Then
\begin{align*} p'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} {p^{\prime }\left (x \right )}^{2}+p \left (x \right )-x = 0 \end{align*}
Which is now solve for \(p(x)\) as first order ode. Let \(p=p^{\prime }\left (x \right )\) the ode becomes
\begin{align*} p^{2}+p -x = 0 \end{align*}
Solving for \(p \left (x \right )\) from the above results in
\begin{align*} p \left (x \right ) &= -p^{2}+x\tag {1A} \end{align*}
This has the form
\begin{align*} p=xf(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=p'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(p \left (x \right )=x f + g\) to (1A) shows that
\begin{align*} f &= 1\\ g &= -p^{2} \end{align*}
Hence (2) becomes
\begin{align*} p -1 = -2 p p^{\prime }\left (x \right )\tag {2A} \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{align*} p^{\prime }\left (x \right ) = -\frac {p \left (x \right )-1}{2 p \left (x \right )}\tag {3} \end{align*}
This ODE is now solved for \(p \left (x \right )\). No inversion is needed. Integrating gives
\begin{align*} \int -\frac {2 p}{p -1}d p &= dx\\ -2 p -2 \ln \left (p -1\right )&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} -\frac {p -1}{2 p}&= 0 \end{align*}
for \(p \left (x \right )\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (x \right ) = 1 \end{align*}
Solving for \(p \left (x \right )\) from the above solution(s) gives (after possible removing of solutions that do not
verify)
\begin{align*} p \left (x \right )&=1\\ p \left (x \right )&=\operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )+1 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*} p \left (x \right ) = x -1\\ p \left (x \right ) = -{\left (\operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )+1\right )}^{2}+x\\ \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = x -1 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {x -1\, dx}\\ y &= \frac {1}{2} x^{2}-x + c_2 \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = -{\left (\operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )+1\right )}^{2}+x \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-\operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )^{2}-2 \operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )+x -1\, dx}\\ y &= \frac {2 \operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )^{3}}{3}+3 \operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )^{2}+4 \operatorname {LambertW}\left ({\mathrm e}^{-1-\frac {x}{2}-\frac {c_1}{2}}\right )+\frac {x^{2}}{2}-x + c_3 \end{align*}
Will add steps showing solving for IC soon.
1.19.2 Maple step by step solution
1.19.3 Maple trace
Methods for second order ODEs:
1.19.4 Maple dsolve solution
Solving time : 0.034
(sec)
Leaf size : 122
dsolve(diff(diff(y(x),x),x)^2+diff(y(x),x) = x,
y(x),singsol=all)
\begin{align*}
y &= \int \left (-{\mathrm e}^{2 \operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_1 -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_1 -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+x \right )d x -x +c_2 \\
y &= \frac {2 \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-\frac {x}{2}-1}\right )^{3}}{3}+3 \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-\frac {x}{2}-1}\right )^{2}+4 \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-\frac {x}{2}-1}\right )+\frac {x^{2}}{2}-x +c_2 \\
\end{align*}
1.19.5 Mathematica DSolve solution
Solving time : 16.306
(sec)
Leaf size : 172
DSolve[{(D[y[x],{x,2}])^2+D[y[x],x]==x,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {2}{3} W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^3+3 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^2+4 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right )+\frac {x^2}{2}-x+c_2 \\
y(x)\to \frac {2}{3} W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^3+3 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^2+4 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right )+\frac {x^2}{2}-x+c_2 \\
y(x)\to \frac {x^2}{2}-x+c_2 \\
\end{align*}