2.1.20 Problem 20

Solved as second order missing y ode
Maple
Mathematica
Sympy

Internal problem ID [9090]
Book : Second order enumerated odes
Section : section 1
Problem number : 20
Date solved : Friday, April 25, 2025 at 05:41:27 PM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

Solved as second order missing y ode

Time used: 0.971 (sec)

Solve

y+y2=x

This is second order ode with missing dependent variable y. Let

u(x)=y

Then

u(x)=y

Hence the ode becomes

u(x)+u(x)2x=0

Which is now solved for u(x) as first order ode.

This is reduced Riccati ode of the form

u=axn+bu2

Comparing the given ode to the above shows that

a=1b=1n=1

Since n2 then the solution of the reduced Riccati ode is given by

(1)w=x{c1BesselJ(12k,1kabxk)+c2BesselY(12k,1kabxk)ab>0c1BesselI(12k,1kabxk)+c2BesselK(12k,1kabxk)ab<0u=1bwwk=1+n2

Since ab<0 then EQ(1) gives

k=32w=x(c1BesselI(13,2x3/23)+c2BesselK(13,2x3/23))

Therefore the solution becomes

u=1bww

Substituting the value of b,w found above and simplyfing gives

u=x(BesselI(23,2x3/23)c1BesselK(23,2x3/23)c2)c1BesselI(13,2x3/23)+c2BesselK(13,2x3/23)

Letting c2=1 the above becomes

u=x(BesselI(23,2x3/23)c1BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)

In summary, these are the solution found for y(x)

u=x(BesselI(23,2x3/23)c1BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)

For solution u=x(BesselI(23,2x3/23)c1BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23), since u=y(x) then we now have a new first order ode to solve which is

y(x)=x(BesselI(23,2x3/23)c1BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)

Since the ode has the form y=f(x), then we only need to integrate f(x).

dy=x(BesselI(23,2x3/23)c1+BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)dxy=x(BesselI(23,2x3/23)c1+BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)dx+c3
y=x(BesselI(23,2x3/23)c1+BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)dx+c3

In summary, these are the solution found for (y)

y=x(BesselI(23,2x3/23)c1+BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)dx+c3

Summary of solutions found

y=x(BesselI(23,2x3/23)c1+BesselK(23,2x3/23))c1BesselI(13,2x3/23)+BesselK(13,2x3/23)dx+c3

Maple. Time used: 0.018 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = x; 
dsolve(ode,y(x), singsol=all);
 
y=ln(π)+ln(c1AiryAi(x)c2AiryBi(x))

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful 
<- 2nd order, 2 integrating factors of the form mu(x,y) successful
 

Mathematica. Time used: 0.202 (sec). Leaf size: 15
ode=D[y[x],{x,2}]+(D[y[x],x])^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)log(xc1)+c2
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list