2.1.20 problem 20
Internal
problem
ID
[8503]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
20
Date
solved
:
Sunday, November 10, 2024 at 03:55:14 AM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]
Solve
\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=x \end{align*}
Solved as second order missing y ode
Time used: 1.155 (sec)
This is second order ode with missing dependent variable \(y\). Let
\begin{align*} p(x) &= y^{\prime } \end{align*}
Then
\begin{align*} p'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} p^{\prime }\left (x \right )+p \left (x \right )^{2}-x = 0 \end{align*}
Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\begin{align*} p' &= F(x,p)\\ &= -p^{2}+x \end{align*}
This is a Riccati ODE. Comparing the ODE to solve
\[ p' = -p^{2}+x \]
With Riccati ODE standard form
\[ p' = f_0(x)+ f_1(x)p+f_2(x)p^{2} \]
Shows that \(f_0(x)=x\), \(f_1(x)=0\) and \(f_2(x)=-1\). Let
\begin{align*} p &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{-u} \tag {1} \end{align*}
Using the above substitution in the given ODE results (after some simplification)in a second
order ODE to solve for \(u(x)\) which is
\begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end{align*}
But
\begin{align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=x \end{align*}
Substituting the above terms back in equation (2) gives
\begin{align*} -u^{\prime \prime }\left (x \right )+x u \left (x \right ) = 0 \end{align*}
This is Airy ODE. It has the general form
\[ a \frac {d^{2}u}{d x^{2}} + b \frac {d u}{d x} + c x u = F(x) \]
Where in this case
\begin{align*} a &= -1\\ b &= 0\\ c &= 1\\ F &= 0 \end{align*}
Therefore the solution to the homogeneous Airy ODE becomes
\[
u = c_1 \operatorname {AiryAi}\left (-x \left (-1\right )^{{1}/{3}}\right )+c_2 \operatorname {AiryBi}\left (-x \left (-1\right )^{{1}/{3}}\right )
\]
Will add steps showing
solving for IC soon.
Taking derivative gives
\[
u^{\prime }\left (x \right ) = -c_1 \left (-1\right )^{{1}/{3}} \operatorname {AiryAi}\left (1, -x \left (-1\right )^{{1}/{3}}\right )-c_2 \left (-1\right )^{{1}/{3}} \operatorname {AiryBi}\left (1, -x \left (-1\right )^{{1}/{3}}\right )
\]
Doing change of constants, the solution becomes
\[
p = \frac {-c_3 \left (-1\right )^{{1}/{3}} \operatorname {AiryAi}\left (1, -x \left (-1\right )^{{1}/{3}}\right )-\left (-1\right )^{{1}/{3}} \operatorname {AiryBi}\left (1, -x \left (-1\right )^{{1}/{3}}\right )}{c_3 \operatorname {AiryAi}\left (-x \left (-1\right )^{{1}/{3}}\right )+\operatorname {AiryBi}\left (-x \left (-1\right )^{{1}/{3}}\right )}
\]
For solution
(1) found earlier, since \(p=y^{\prime }\left (x \right )\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime }\left (x \right ) = -\frac {\left (1+i \sqrt {3}\right ) \left (\operatorname {AiryAi}\left (1, -\frac {x \left (1+i \sqrt {3}\right )}{2}\right ) c_3 +\operatorname {AiryBi}\left (1, -\frac {x \left (1+i \sqrt {3}\right )}{2}\right )\right )}{2 c_3 \operatorname {AiryAi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )+2 \operatorname {AiryBi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )} \end{align*}
Since the ode has the form \(y^{\prime }\left (x \right )=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-\frac {\left (1+i \sqrt {3}\right ) \left (\operatorname {AiryAi}\left (1, -\frac {x \left (1+i \sqrt {3}\right )}{2}\right ) c_3 +\operatorname {AiryBi}\left (1, -\frac {x \left (1+i \sqrt {3}\right )}{2}\right )\right )}{2 \left (c_3 \operatorname {AiryAi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )+\operatorname {AiryBi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )\right )}\, dx}\\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \ln \left (c_3 \operatorname {AiryAi}\left (\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x \right )+\operatorname {AiryBi}\left (\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x \right )\right )}{2 \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )} + c_4 \end{align*}
\begin{align*} y \left (x \right )&= \ln \left (c_3 \operatorname {AiryAi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )+\operatorname {AiryBi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )\right )+c_4 \end{align*}
Will add steps showing solving for IC soon.
Summary of solutions found
\begin{align*}
y \left (x \right ) &= \ln \left (c_3 \operatorname {AiryAi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )+\operatorname {AiryBi}\left (-\frac {x \left (1+i \sqrt {3}\right )}{2}\right )\right )+c_4 \\
\end{align*}
Maple step by step solution
Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
Maple dsolve solution
Solving time : 0.016
(sec)
Leaf size : 18
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)^2 = x,
y(x),singsol=all)
\[
y = \ln \left (\pi \right )+\ln \left (c_{1} \operatorname {AiryAi}\left (x \right )-c_{2} \operatorname {AiryBi}\left (x \right )\right )
\]
Mathematica DSolve solution
Solving time : 0.106
(sec)
Leaf size : 15
DSolve[{D[y[x],{x,2}]+(D[y[x],x])^2==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \log (x-c_1)+c_2
\]