2.1.46 problem 46
Internal
problem
ID
[8793]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
46
Date
solved
:
Thursday, December 12, 2024 at 09:48:00 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
Solve
\begin{align*} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3}&=0 \end{align*}
Solved as second order missing x ode
Time used: 2.196 (sec)
This is missing independent variable second order ode. Solved by reduction of order by using
substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} y p \left (y \right )^{2} \left (\frac {d}{d y}p \left (y \right )\right )^{2}+p \left (y \right )^{3} = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Solving for \(p^{\prime }\) gives
\begin{align*} p^{\prime }&=\frac {\sqrt {-p y}}{y}\tag {1} \\ p^{\prime }&=-\frac {\sqrt {-p y}}{y}\tag {2} \end{align*}
In canonical form, the ODE is
\begin{align*} p' &= F(y,p)\\ &= \frac {\sqrt {-p y}}{y}\tag {1} \end{align*}
An ode of the form \(p' = \frac {M(y,p)}{N(y,p)}\) is called homogeneous if the functions \(M(y,p)\) and \(N(y,p)\) are both homogeneous
functions and of the same order. Recall that a function \(f(y,p)\) is homogeneous of order \(n\) if
\[ f(t^n y, t^n p)= t^n f(y,p) \]
In this
case, it can be seen that both \(M=\sqrt {-p y}\) and \(N=y\) are both homogeneous and of the same order \(n=1\). Therefore
this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution \(u=\frac {p}{y}\), or \(p=uy\). Hence
\[ \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}y}}y + u \]
Applying the transformation \(p=uy\) to the above ODE in (1)
gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}y}}y + u &= \sqrt {-u}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}y}} &= \frac {\sqrt {-u \left (y \right )}-u \left (y \right )}{y} \end{align*}
Or
\[ u^{\prime }\left (y \right )-\frac {\sqrt {-u \left (y \right )}-u \left (y \right )}{y} = 0 \]
Or
\[ u^{\prime }\left (y \right ) y -\sqrt {-u \left (y \right )}+u \left (y \right ) = 0 \]
Which is now solved as separable in \(u \left (y \right )\).
The ode \(u^{\prime }\left (y \right ) = \frac {\sqrt {-u \left (y \right )}-u \left (y \right )}{y}\) is separable as it can be written as
\begin{align*} u^{\prime }\left (y \right )&= \frac {\sqrt {-u \left (y \right )}-u \left (y \right )}{y}\\ &= f(y) g(u) \end{align*}
Where
\begin{align*} f(y) &= \frac {1}{y}\\ g(u) &= \sqrt {-u}-u \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(y) \,dy}\\ \int { \frac {1}{\sqrt {-u}-u}\,du} &= \int { \frac {1}{y} \,dy}\\ \ln \left (\frac {1}{\left (\sqrt {-u \left (y \right )}+1\right )^{2}}\right )&=\ln \left (y \right )+c_1 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(\sqrt {-u}-u=0\) for \(u \left (y \right )\) gives
\begin{align*} u \left (y \right )&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} \ln \left (\frac {1}{\left (\sqrt {-u \left (y \right )}+1\right )^{2}}\right ) = \ln \left (y \right )+c_1\\ u \left (y \right ) = 0 \end{align*}
Converting \(\ln \left (\frac {1}{\left (\sqrt {-u \left (y \right )}+1\right )^{2}}\right ) = \ln \left (y \right )+c_1\) back to \(p\) gives
\begin{align*} \ln \left (\frac {1}{\left (\sqrt {-\frac {p}{y}}+1\right )^{2}}\right ) = \ln \left (y \right )+c_1 \end{align*}
Converting \(u \left (y \right ) = 0\) back to \(p\) gives
\begin{align*} p = 0 \end{align*}
In canonical form, the ODE is
\begin{align*} p' &= F(y,p)\\ &= -\frac {\sqrt {-p y}}{y}\tag {1} \end{align*}
An ode of the form \(p' = \frac {M(y,p)}{N(y,p)}\) is called homogeneous if the functions \(M(y,p)\) and \(N(y,p)\) are both homogeneous
functions and of the same order. Recall that a function \(f(y,p)\) is homogeneous of order \(n\) if
\[ f(t^n y, t^n p)= t^n f(y,p) \]
In this
case, it can be seen that both \(M=-\sqrt {-p y}\) and \(N=y\) are both homogeneous and of the same order \(n=1\). Therefore
this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution \(u=\frac {p}{y}\), or \(p=uy\). Hence
\[ \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}y}}y + u \]
Applying the transformation \(p=uy\) to the above ODE in (1)
gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}y}}y + u &= -\sqrt {-u}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}y}} &= \frac {-\sqrt {-u \left (y \right )}-u \left (y \right )}{y} \end{align*}
Or
\[ u^{\prime }\left (y \right )-\frac {-\sqrt {-u \left (y \right )}-u \left (y \right )}{y} = 0 \]
Or
\[ u^{\prime }\left (y \right ) y +\sqrt {-u \left (y \right )}+u \left (y \right ) = 0 \]
Which is now solved as separable in \(u \left (y \right )\).
The ode \(u^{\prime }\left (y \right ) = -\frac {\sqrt {-u \left (y \right )}+u \left (y \right )}{y}\) is separable as it can be written as
\begin{align*} u^{\prime }\left (y \right )&= -\frac {\sqrt {-u \left (y \right )}+u \left (y \right )}{y}\\ &= f(y) g(u) \end{align*}
Where
\begin{align*} f(y) &= \frac {1}{y}\\ g(u) &= -\sqrt {-u}-u \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(y) \,dy}\\ \int { \frac {1}{-\sqrt {-u}-u}\,du} &= \int { \frac {1}{y} \,dy}\\ -2 \ln \left (\sqrt {-u \left (y \right )}-1\right )&=\ln \left (y \right )+c_2 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(-\sqrt {-u}-u=0\) for \(u \left (y \right )\) gives
\begin{align*} u \left (y \right )&=-1\\ u \left (y \right )&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} -2 \ln \left (\sqrt {-u \left (y \right )}-1\right ) = \ln \left (y \right )+c_2\\ u \left (y \right ) = -1\\ u \left (y \right ) = 0 \end{align*}
Converting \(-2 \ln \left (\sqrt {-u \left (y \right )}-1\right ) = \ln \left (y \right )+c_2\) back to \(p\) gives
\begin{align*} -2 \ln \left (\sqrt {-\frac {p}{y}}-1\right ) = \ln \left (y \right )+c_2 \end{align*}
Converting \(u \left (y \right ) = -1\) back to \(p\) gives
\begin{align*} p = -y \end{align*}
Converting \(u \left (y \right ) = 0\) back to \(p\) gives
\begin{align*} p = 0 \end{align*}
Solving for \(p\) gives
\begin{align*}
p &= \left (-\frac {2 y \,{\mathrm e}^{c_1} \left (\sqrt {y \,{\mathrm e}^{c_1}}-1\right )}{\sqrt {y \,{\mathrm e}^{c_1}}}+y \,{\mathrm e}^{c_1}-1\right ) {\mathrm e}^{-c_1} \\
p &= \left (-\frac {2 y \,{\mathrm e}^{c_1} \left (\sqrt {y \,{\mathrm e}^{c_1}}+1\right )}{\sqrt {y \,{\mathrm e}^{c_1}}}+y \,{\mathrm e}^{c_1}-1\right ) {\mathrm e}^{-c_1} \\
\end{align*}
Solving for \(p\) gives
\begin{align*}
p &= -\left (\frac {2 y \,{\mathrm e}^{c_2} \left (\sqrt {y \,{\mathrm e}^{c_2}}-1\right )}{\sqrt {y \,{\mathrm e}^{c_2}}}-y \,{\mathrm e}^{c_2}+1\right ) {\mathrm e}^{-c_2} \\
p &= -\left (\frac {2 y \,{\mathrm e}^{c_2} \left (\sqrt {y \,{\mathrm e}^{c_2}}+1\right )}{\sqrt {y \,{\mathrm e}^{c_2}}}-y \,{\mathrm e}^{c_2}+1\right ) {\mathrm e}^{-c_2} \\
\end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a
new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_3 \\ y &= c_3 \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = \left (-\frac {2 y \,{\mathrm e}^{c_1} \left (\sqrt {y \,{\mathrm e}^{c_1}}-1\right )}{\sqrt {y \,{\mathrm e}^{c_1}}}+y \,{\mathrm e}^{c_1}-1\right ) {\mathrm e}^{-c_1} \end{align*}
Integrating gives
\begin{align*} \int -\frac {\sqrt {y \,{\mathrm e}^{c_1}}\, {\mathrm e}^{c_1}}{y \,{\mathrm e}^{c_1} \sqrt {y \,{\mathrm e}^{c_1}}-2 y \,{\mathrm e}^{c_1}+\sqrt {y \,{\mathrm e}^{c_1}}}d y &= dx\\ \frac {2+\left (-2 \sqrt {y \,{\mathrm e}^{c_1}}+2\right ) \ln \left (\sqrt {y \,{\mathrm e}^{c_1}}-1\right )}{\sqrt {y \,{\mathrm e}^{c_1}}-1}&= x +c_4 \end{align*}
Singular solutions are found by solving
\begin{align*} -\frac {\left (y \,{\mathrm e}^{c_1} \sqrt {y \,{\mathrm e}^{c_1}}-2 y \,{\mathrm e}^{c_1}+\sqrt {y \,{\mathrm e}^{c_1}}\right ) {\mathrm e}^{-c_1}}{\sqrt {y \,{\mathrm e}^{c_1}}}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = {\mathrm e}^{-c_1} \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \frac {\left (\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_4}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left ({\mathrm e}^{\frac {c_4}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_1}}{\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_4}{2}+\frac {x}{2}}\right )^{2}} \\
\end{align*}
For solution (3) found earlier, since \(p=y^{\prime }\) then we now have a new first order
ode to solve which is
\begin{align*} y^{\prime } = \left (-\frac {2 y \,{\mathrm e}^{c_1} \left (1+\sqrt {y \,{\mathrm e}^{c_1}}\right )}{\sqrt {y \,{\mathrm e}^{c_1}}}+y \,{\mathrm e}^{c_1}-1\right ) {\mathrm e}^{-c_1} \end{align*}
Integrating gives
\begin{align*} \int -\frac {\sqrt {y \,{\mathrm e}^{c_1}}\, {\mathrm e}^{c_1}}{y \,{\mathrm e}^{c_1} \sqrt {y \,{\mathrm e}^{c_1}}+2 y \,{\mathrm e}^{c_1}+\sqrt {y \,{\mathrm e}^{c_1}}}d y &= dx\\ \frac {-2+\left (-2 \sqrt {y \,{\mathrm e}^{c_1}}-2\right ) \ln \left (\sqrt {y \,{\mathrm e}^{c_1}}+1\right )}{\sqrt {y \,{\mathrm e}^{c_1}}+1}&= x +c_5 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \frac {\left (\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_5}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_5}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_1}}{\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_5}{2}+\frac {x}{2}}\right )^{2}} \\
\end{align*}
For solution (4) found earlier, since \(p=y^{\prime }\) then we now have a new first order
ode to solve which is
\begin{align*} y^{\prime } = -y \end{align*}
Integrating gives
\begin{align*} \int -\frac {1}{y}d y &= dx\\ -\ln \left (y \right )&= x +c_6 \end{align*}
Singular solutions are found by solving
\begin{align*} -y&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = 0 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= {\mathrm e}^{-x -c_6} \\
\end{align*}
For solution (5) found earlier, since \(p=y^{\prime }\) then we now have a new first order
ode to solve which is
\begin{align*} y^{\prime } = -\left (\frac {2 y \,{\mathrm e}^{c_2} \left (\sqrt {y \,{\mathrm e}^{c_2}}-1\right )}{\sqrt {y \,{\mathrm e}^{c_2}}}-y \,{\mathrm e}^{c_2}+1\right ) {\mathrm e}^{-c_2} \end{align*}
Integrating gives
\begin{align*} \int -\frac {\sqrt {y \,{\mathrm e}^{c_2}}\, {\mathrm e}^{c_2}}{y \,{\mathrm e}^{c_2} \sqrt {y \,{\mathrm e}^{c_2}}-2 y \,{\mathrm e}^{c_2}+\sqrt {y \,{\mathrm e}^{c_2}}}d y &= dx\\ \frac {2+\left (-2 \sqrt {y \,{\mathrm e}^{c_2}}+2\right ) \ln \left (\sqrt {y \,{\mathrm e}^{c_2}}-1\right )}{\sqrt {y \,{\mathrm e}^{c_2}}-1}&= x +c_7 \end{align*}
Singular solutions are found by solving
\begin{align*} -\frac {\left (y \,{\mathrm e}^{c_2} \sqrt {y \,{\mathrm e}^{c_2}}-2 y \,{\mathrm e}^{c_2}+\sqrt {y \,{\mathrm e}^{c_2}}\right ) {\mathrm e}^{-c_2}}{\sqrt {y \,{\mathrm e}^{c_2}}}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = {\mathrm e}^{-c_2} \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \frac {\left (\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_7}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left ({\mathrm e}^{\frac {c_7}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_2}}{\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_7}{2}+\frac {x}{2}}\right )^{2}} \\
\end{align*}
For solution (6) found earlier, since \(p=y^{\prime }\) then we now have a new first order
ode to solve which is
\begin{align*} y^{\prime } = -\left (\frac {2 y \,{\mathrm e}^{c_2} \left (1+\sqrt {y \,{\mathrm e}^{c_2}}\right )}{\sqrt {y \,{\mathrm e}^{c_2}}}-y \,{\mathrm e}^{c_2}+1\right ) {\mathrm e}^{-c_2} \end{align*}
Integrating gives
\begin{align*} \int -\frac {\sqrt {y \,{\mathrm e}^{c_2}}\, {\mathrm e}^{c_2}}{y \,{\mathrm e}^{c_2} \sqrt {y \,{\mathrm e}^{c_2}}+2 y \,{\mathrm e}^{c_2}+\sqrt {y \,{\mathrm e}^{c_2}}}d y &= dx\\ \frac {-2+\left (-2 \sqrt {y \,{\mathrm e}^{c_2}}-2\right ) \ln \left (\sqrt {y \,{\mathrm e}^{c_2}}+1\right )}{\sqrt {y \,{\mathrm e}^{c_2}}+1}&= x +c_8 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \frac {\left (\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_8}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_8}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_2}}{\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_8}{2}+\frac {x}{2}}\right )^{2}} \\
\end{align*}
Will add steps showing solving for IC soon.
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= c_3 \\
y &= {\mathrm e}^{-c_1} \\
y &= {\mathrm e}^{-c_2} \\
y &= \frac {\left (\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_5}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_5}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_1}}{\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_5}{2}+\frac {x}{2}}\right )^{2}} \\
y &= \frac {\left (\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_8}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_8}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_2}}{\operatorname {LambertW}\left (-{\mathrm e}^{\frac {c_8}{2}+\frac {x}{2}}\right )^{2}} \\
y &= \frac {\left (\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_4}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left ({\mathrm e}^{\frac {c_4}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_1}}{\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_4}{2}+\frac {x}{2}}\right )^{2}} \\
y &= \frac {\left (\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_7}{2}+\frac {x}{2}}\right )^{2}+2 \operatorname {LambertW}\left ({\mathrm e}^{\frac {c_7}{2}+\frac {x}{2}}\right )+1\right ) {\mathrm e}^{-c_2}}{\operatorname {LambertW}\left ({\mathrm e}^{\frac {c_7}{2}+\frac {x}{2}}\right )^{2}} \\
y &= {\mathrm e}^{-x -c_6} \\
\end{align*}
Maple step by step solution
Maple trace
`Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-_b(_a))^(3/2)-_b(_a)^2, _b(_a), explicit, HINT = [[1, 0]]` ***
symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]
Maple dsolve solution
Solving time : 0.331
(sec)
Leaf size : 166
dsolve(y(x)*diff(diff(y(x),x),x)^2+diff(y(x),x)^3 = 0,
y(x),singsol=all)
\begin{align*}
y &= c_{1} \\
y &= 0 \\
y &= \frac {c_{2} {\left (\operatorname {LambertW}\left (c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )+1\right )}^{2}}{\operatorname {LambertW}\left (c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )^{2}} \\
y &= \frac {c_{2} {\left (\operatorname {LambertW}\left (-c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )+1\right )}^{2}}{\operatorname {LambertW}\left (-c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )^{2}} \\
y &= {\mathrm e}^{-\left (\int {\mathrm e}^{2 \operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} \ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} {\mathrm e}^{\textit {\_Z}}-2 \,{\mathrm e}^{\textit {\_Z}} \textit {\_Z} +x \,{\mathrm e}^{\textit {\_Z}}+\ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} -2 \textit {\_Z} +x -2\right )}d x \right )-2 \left (\int {\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} \ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} {\mathrm e}^{\textit {\_Z}}-2 \,{\mathrm e}^{\textit {\_Z}} \textit {\_Z} +x \,{\mathrm e}^{\textit {\_Z}}+\ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} -2 \textit {\_Z} +x -2\right )}d x \right )-x +c_{2}} \\
\end{align*}
Mathematica DSolve solution
Solving time : 3.059
(sec)
Leaf size : 361
DSolve[{y[x]*D[y[x],{x,2}]^2+D[y[x],x]^3==0,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \text {InverseFunction}\left [-4 \left (\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}-i c_1\right )-\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}-i c_1\right )}\right )\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-4 \left (\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}+i c_1\right )}+\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}+i c_1\right )\right )\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-4 \left (\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}-i (-c_1)\right )-\frac {i (-c_1)}{2 \left (2 \sqrt {\text {$\#$1}}-i (-c_1)\right )}\right )\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-4 \left (\frac {i (-c_1)}{2 \left (2 \sqrt {\text {$\#$1}}+i (-1) c_1\right )}+\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}+i (-1) c_1\right )\right )\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-4 \left (\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}-i c_1\right )-\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}-i c_1\right )}\right )\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-4 \left (\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}+i c_1\right )}+\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}+i c_1\right )\right )\&\right ][x+c_2] \\
\end{align*}