1.47 problem 47
Internal
problem
ID
[8084]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
47
Date
solved
:
Monday, October 21, 2024 at 04:48:02 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
Solve
\begin{align*} y^{2} {y^{\prime \prime }}^{2}+y^{\prime }&=0 \end{align*}
1.47.1 Solved as second order missing x ode
Time used: 5.078 (sec)
This is missing independent variable second order ode. Solved by reduction of order by using
substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} y^{2} p \left (y \right )^{2} \left (\frac {d}{d y}p \left (y \right )\right )^{2}+p \left (y \right ) = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} p^{\prime }&=-\frac {1}{\sqrt {-p}\, y} \\
\tag{2} p^{\prime }&=\frac {1}{\sqrt {-p}\, y} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
The ode \(p^{\prime } = -\frac {1}{\sqrt {-p}\, y}\) is separable as it can be written as
\begin{align*} p^{\prime }&= -\frac {1}{\sqrt {-p}\, y}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= -\frac {1}{y}\\ g(p) &= \frac {1}{\sqrt {-p}} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy}\\ \int { \sqrt {-p}\,dp} &= \int { -\frac {1}{y} \,dy}\\ -\frac {2 \left (-p\right )^{{3}/{2}}}{3}&=\ln \left (\frac {1}{y}\right )+c_1 \end{align*}
Solving for \(p\) from the above solution(s) gives (after possible removing of solutions that do not
verify)
\begin{align*} p = -\frac {\left (-12 \ln \left (\frac {1}{y}\right )-12 c_1 \right )^{{2}/{3}}}{4} \end{align*}
Solving Eq. (2)
The ode \(p^{\prime } = \frac {1}{\sqrt {-p}\, y}\) is separable as it can be written as
\begin{align*} p^{\prime }&= \frac {1}{\sqrt {-p}\, y}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= \frac {1}{y}\\ g(p) &= \frac {1}{\sqrt {-p}} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy}\\ \int { \sqrt {-p}\,dp} &= \int { \frac {1}{y} \,dy}\\ -\frac {2 \left (-p\right )^{{3}/{2}}}{3}&=\ln \left (y \right )+c_2 \end{align*}
Solving for \(p\) from the above solution(s) gives (after possible removing of solutions that do not
verify)
\begin{align*} p = -\frac {\left (-12 \ln \left (y \right )-12 c_2 \right )^{{2}/{3}}}{4} \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = -\frac {\left (-12 \ln \left (y\right )-12 c_2 \right )^{{2}/{3}}}{4} \end{align*}
Since initial conditions \(\left (x_0,y_0\right ) \) are given, then the result can be written as Since unable to evaluate
the integral, and no initial conditions are given, then the result becomes
\[ \int _{}^{y}-\frac {4}{\left (-12 \ln \left (\tau \right )-12 c_2 \right )^{{2}/{3}}}d \tau = x +c_3 \]
Singular solutions
are found by solving
\begin{align*} -\frac {\left (-12 \ln \left (y \right )-12 c_2 \right )^{{2}/{3}}}{4}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = {\mathrm e}^{-c_2} \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = -\frac {\left (-12 \ln \left (\frac {1}{y}\right )-12 c_1 \right )^{{2}/{3}}}{4} \end{align*}
Since initial conditions \(\left (x_0,y_0\right ) \) are given, then the result can be written as Since unable to evaluate
the integral, and no initial conditions are given, then the result becomes
\[ \int _{}^{y}-\frac {4}{\left (-12 \ln \left (\frac {1}{\tau }\right )-12 c_1 \right )^{{2}/{3}}}d \tau = x +c_4 \]
Singular solutions
are found by solving
\begin{align*} -\frac {\left (-12 \ln \left (\frac {1}{y}\right )-12 c_1 \right )^{{2}/{3}}}{4}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = {\mathrm e}^{c_1} \end{align*}
Will add steps showing solving for IC soon.
1.47.2 Maple step by step solution
1.47.3 Maple trace
Methods for second order ODEs:
1.47.4 Maple dsolve solution
Solving time : 0.069
(sec)
Leaf size : 225
dsolve(y(x)^2*diff(diff(y(x),x),x)^2+diff(y(x),x) = 0,
y(x),singsol=all)
\begin{align*}
y &= c_1 \\
y &= 0 \\
-4 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_2 &= 0 \\
-4 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_2 &= 0 \\
\frac {-16 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} \right )-2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} \right )-2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\end{align*}
1.47.5 Mathematica DSolve solution
Solving time : 3.841
(sec)
Leaf size : 449
DSolve[{y[x]^2*D[y[x],{x,2}]^2+D[y[x],x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i (-c_1)} (-\log (\text {$\#$1})-i (-1) c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i (-1) c_1-\log (\text {$\#$1})\right )}{(-i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i (-c_1)} (-\log (\text {$\#$1})+i (-c_1)){}^{2/3} \Gamma \left (\frac {1}{3},i (-c_1)-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\
\end{align*}