2.1.47 Problem 47
Internal
problem
ID
[10406]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
47
Date
solved
:
Monday, December 08, 2025 at 08:46:53 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
2.1.47.1 second order ode missing x
2.474 (sec)
\begin{align*}
y^{2} {y^{\prime \prime }}^{2}+y^{\prime }&=0 \\
\end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode.
Solved by reduction of order by using substitution which makes the dependent variable \(y\) an
independent variable. Using \begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} y^{2} p \left (y \right )^{2} \left (\frac {d}{d y}p \left (y \right )\right )^{2}+p \left (y \right ) = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
2.1.47.2 Solved by factoring the differential equation
Time used: 0.332 (sec)
\begin{align*}
y^{2} p^{2} {p^{\prime }}^{2}+p&=0 \\
\end{align*}
Writing the ode as \begin{align*} \left (p\right )\left ({p^{\prime }}^{2} p y^{2}+1\right )&=0 \end{align*}
Therefore we need to solve the following equations
\begin{align*}
\tag{1} p &= 0 \\
\tag{2} {p^{\prime }}^{2} p y^{2}+1 &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Entering zero order ode solverSolving for \(p\) from
\begin{align*} p = 0 \end{align*}
Solving gives
\begin{align*}
p &= 0 \\
\end{align*}
Solving equation (2)
Entering first order ode homog type G solverMultiplying the right side of the ode, which is \(-\frac {1}{\sqrt {-p}\, y}\) by \(\frac {y}{p}\)
gives
\begin{align*} p^{\prime } &= \left (\frac {y}{p}\right ) -\frac {1}{\sqrt {-p}\, y}\\ &= -\frac {1}{p \sqrt {-p}}\\ &= F(y,p) \end{align*}
Since \(F \left (y , p\right )\) has \(p\), then let
\begin{align*} f_y&= y \left (\frac {\partial }{\partial y}F \left (y , p\right )\right )\\ &= 0\\ f_p&= p \left (\frac {\partial }{\partial p}F \left (y , p\right )\right )\\ &= -\frac {3}{2 \left (-p \right )^{{3}/{2}}}\\ \alpha &= \frac {f_y}{f_p} \\ &=0 \end{align*}
Since \(\alpha \) is independent of \(y,p\) then this is Homogeneous type G.
Let
\begin{align*} p&=\frac {z}{y^ \alpha }\\ &=\frac {z}{1} \end{align*}
Substituting the above back into \(F(y,p)\) gives
\begin{align*} F \left (z \right ) &=\frac {1}{\left (-z \right )^{{3}/{2}}} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(y\) nor on \(p\). If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (y \right )- c_1 - \int ^{p y^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (y \right )-c_1 +\int _{}^{p}-\frac {\left (-z \right )^{{3}/{2}}}{z}d z = 0
\]
Multiplying the right side of the ode, which is \(\frac {1}{\sqrt {-p}\, y}\) by \(\frac {y}{p}\) gives \begin{align*} p^{\prime } &= \left (\frac {y}{p}\right ) \frac {1}{\sqrt {-p}\, y}\\ &= \frac {1}{p \sqrt {-p}}\\ &= F(y,p) \end{align*}
Since \(F \left (y , p\right )\) has \(p\), then let
\begin{align*} f_y&= y \left (\frac {\partial }{\partial y}F \left (y , p\right )\right )\\ &= 0\\ f_p&= p \left (\frac {\partial }{\partial p}F \left (y , p\right )\right )\\ &= \frac {3}{2 \left (-p \right )^{{3}/{2}}}\\ \alpha &= \frac {f_y}{f_p} \\ &=0 \end{align*}
Since \(\alpha \) is independent of \(y,p\) then this is Homogeneous type G.
Let
\begin{align*} p&=\frac {z}{y^ \alpha }\\ &=\frac {z}{1} \end{align*}
Substituting the above back into \(F(y,p)\) gives
\begin{align*} F \left (z \right ) &=-\frac {1}{\left (-z \right )^{{3}/{2}}} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(y\) nor on \(p\). If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (y \right )- c_1 - \int ^{p y^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (y \right )-c_2 +\int _{}^{p}\frac {\left (-z \right )^{{3}/{2}}}{z}d z = 0
\]
Summary of solutions found
\begin{align*}
\ln \left (y \right )-c_1 +\int _{}^{p}-\frac {\left (-z \right )^{{3}/{2}}}{z}d z &= 0 \\
\ln \left (y \right )-c_2 +\int _{}^{p}\frac {\left (-z \right )^{{3}/{2}}}{z}d z &= 0 \\
p &= 0 \\
\end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} \ln \left (y\right )-c_1 +\int _{}^{y^{\prime }}-\frac {\left (-z \right )^{{3}/{2}}}{z}d z = 0 \end{align*}
Entering first order ode autonomous solverUnable to integrate (or intergal too complicated), and
since no initial conditions are given, then the result can be written as
\[ \int _{}^{y}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\tau \right )+c_1 -\int _{}^{\textit {\_Z}}-\frac {\left (-z \right )^{{3}/{2}}}{z}d z \right )}d \tau = x +c_3 \]
Solving for \(y\) gives \begin{align*}
y &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\tau \right )+c_1 -\int _{}^{\textit {\_Z}}-\frac {\left (-z \right )^{{3}/{2}}}{z}d z \right )}d \tau +x +c_3 \right ) \\
\end{align*}
For
solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} \ln \left (y\right )-c_2 +\int _{}^{y^{\prime }}\frac {\left (-z \right )^{{3}/{2}}}{z}d z = 0 \end{align*}
Entering first order ode autonomous solverUnable to integrate (or intergal too complicated), and
since no initial conditions are given, then the result can be written as
\[ \int _{}^{y}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\tau \right )+c_2 -\int _{}^{\textit {\_Z}}\frac {\left (-z \right )^{{3}/{2}}}{z}d z \right )}d \tau = x +c_4 \]
Solving for \(y\) gives \begin{align*}
y &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\tau \right )+c_2 -\int _{}^{\textit {\_Z}}\frac {\left (-z \right )^{{3}/{2}}}{z}d z \right )}d \tau +x +c_4 \right ) \\
\end{align*}
For
solution (3) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_5 \\ y &= c_5 \end{align*}
Summary of solutions found
\begin{align*}
y &= c_5 \\
y &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\tau \right )+c_2 -\int _{}^{\textit {\_Z}}\frac {\left (-z \right )^{{3}/{2}}}{z}d z \right )}d \tau +x +c_4 \right ) \\
y &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\tau \right )+c_1 -\int _{}^{\textit {\_Z}}-\frac {\left (-z \right )^{{3}/{2}}}{z}d z \right )}d \tau +x +c_3 \right ) \\
\end{align*}
2.1.47.3 ✓ Maple. Time used: 0.036 (sec). Leaf size: 233
ode:=y(x)^2*diff(diff(y(x),x),x)^2+diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= c_1 \\
y &= 0 \\
-4 \int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -x -c_2 &= 0 \\
-4 \int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -x -c_2 &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} +2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} +2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\end{align*}
Maple trace
Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve e\
ach resulting ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)-(-_b(_a))^(1/2)/
_a = 0, _b(_a), HINT = [[_a, 0]]
*** Sublevel 4 ***
symmetry methods on request
1st order, trying reduction of order with given symmetries:
[_a, 0]
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
-------------------
* Tackling next ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)+(-_b(_a))^(1/2)/
_a = 0, _b(_a), HINT = [[_a, 0]]
*** Sublevel 4 ***
symmetry methods on request
1st order, trying reduction of order with given symmetries:
[_a, 0]
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
-> Calling odsolve with the ODE, diff(y(x),x) = 0, y(x), singsol = none
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
2.1.47.4 ✓ Mathematica. Time used: 1.385 (sec). Leaf size: 449
ode=y[x]^2*D[y[x],{x,2}]^2+D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i (-c_1)} (-\log (\text {$\#$1})-i (-1) c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i (-1) c_1-\log (\text {$\#$1})\right )}{(-i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i (-c_1)} (-\log (\text {$\#$1})+i (-c_1)){}^{2/3} \Gamma \left (\frac {1}{3},i (-c_1)-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \end{align*}
2.1.47.5 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x)**2*Derivative(y(x), (x, 2))**2 + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve y(x)**2*Derivative(y(x), (x, 2))**2 + Derivative(y(x), x)