# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+8 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 16 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-54 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }-2 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+25 y^{\prime \prime }+20 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+11 y^{\prime \prime }+4 y^{\prime }-14 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}a \,x^{3} y^{\prime \prime \prime }+b \,x^{2} y^{\prime \prime }+c x y^{\prime }+d y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 3 x -1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2-\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x \,{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}+5 y^{\prime \prime \prime \prime }-y = 17
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime }+4 y = {\mathrm e}^{x}-x \,{\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 x^{2}-1
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = {\mathrm e}^{x}+7
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime } = {\mathrm e}^{x}+2 x^{2}-5
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-12 y^{\prime } = x -2 x \,{\mathrm e}^{-3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right )+\cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = \left (x^{2}+1\right ) \sin \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 1+x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 5
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = 8 x^{5}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right )^{3}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-x = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+x = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 16 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }-y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (-t +2\right ) y^{\prime \prime \prime }+\left (-3+2 t \right ) y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}t^{2} \left (3+t \right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }-9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+16 y^{\prime }-16 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+9 y^{\prime }+5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}27 y^{\prime \prime \prime }+27 y^{\prime \prime }+9 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+12 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime \prime \prime }-72 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+7 y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+3 y^{\prime \prime }-13 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }-y^{\prime \prime }-7 y^{\prime }+5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-11 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = -{\mathrm e}^{x} \left (-24 x^{2}+76 x +4\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{-3 x} \left (6 x^{2}-23 x +32\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{x} \left (6 x^{2}+45 x +4\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{-2 x} \left (3 x^{2}-17 x +2\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{x} \left (16 x^{3}+24 x^{2}+2 x -1\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = {\mathrm e}^{x} \left (15 x^{2}+34 x +14\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{-2 x} \left (1-15 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{x} \left (7+6 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-7 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (17+30 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y = 2 \,{\mathrm e}^{3 x} \left (11-24 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y = 2 \,{\mathrm e}^{4 x} \left (13+15 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}8 y^{\prime \prime \prime }-12 y^{\prime \prime }+6 y^{\prime }-y = {\mathrm e}^{\frac {x}{2}} \left (1+4 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }-7 y^{\prime }+6 y = -3 \,{\mathrm e}^{-x} \left (-8 x^{2}+8 x +12\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-2 y = -3 \,{\mathrm e}^{2 x} \left (11+12 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime } = -16 \,{\mathrm e}^{-2 x} \left (-x^{3}+x^{2}+x +1\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }-11 y^{\prime \prime }-9 y^{\prime }-2 y = -{\mathrm e}^{x} \left (1-6 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x^{2}+4 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+2 y = {\mathrm e}^{2 x} \left (x^{4}+x +24\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-5 y^{\prime }-2 y = 18 \,{\mathrm e}^{x} \left (5+2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }-4 y = -{\mathrm e}^{2 x} \left (15 x^{2}+28 x +4\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime }-y = 3 \,{\mathrm e}^{-\frac {x}{2}} \left (1-6 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{x} \left (-3 x^{2}+x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (18 x^{2}+33 x +13\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x} \left (12 x^{2}+26 x +15\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \left (11+12 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \left (10 x^{2}-24 x +5\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (-5 x^{2}-8 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (16+10 x \right ) \cos \left (x \right )+\left (30-10 x \right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = {\mathrm e}^{-x} \left (\left (1-22 x \right ) \cos \left (2 x \right )-\left (1+6 x \right ) \sin \left (2 x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y = {\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = -{\mathrm e}^{x} \left (\left (4 x^{2}+5 x +9\right ) \cos \left (2 x \right )-\left (-3 x^{2}-5 x +6\right ) \sin \left (2 x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }+12 y = 8 \cos \left (2 x \right )-16 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+2 y = {\mathrm e}^{x} \left (\left (20+4 x \right ) \cos \left (x \right )-\left (12+12 x \right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+20 y^{\prime }-24 y = -{\mathrm e}^{2 x} \left (\left (13-8 x \right ) \cos \left (2 x \right )-\left (8-4 x \right ) \sin \left (2 x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+18 y^{\prime } = -{\mathrm e}^{3 x} \left (\left (2-3 x \right ) \cos \left (3 x \right )-\left (3+3 x \right ) \sin \left (3 x \right )\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = {\mathrm e}^{x} \left (8 \cos \left (x \right )+16 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }-4 y = {\mathrm e}^{x} \left (2 \cos \left (2 x \right )-\sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+15 y = {\mathrm e}^{2 x} \left (15 x \cos \left (2 x \right )+32 \sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+13 y^{\prime \prime }+12 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (4-x \right ) \cos \left (x \right )-\left (x +5\right ) \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }-4 y = -{\mathrm e}^{-x} \left (\cos \left (x \right )-\sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\cos \left (2 x \right )+\sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+32 y^{\prime \prime }+64 y^{\prime }+39 y = {\mathrm e}^{-2 x} \left (\left (4-15 x \right ) \cos \left (3 x \right )-\left (4+15 x \right ) \sin \left (3 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\left (7+8 x \right ) \cos \left (2 x \right )+\left (8-4 x \right ) \sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+8 y^{\prime \prime }+8 y^{\prime }+4 y = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+32 y^{\prime \prime }-64 y^{\prime }+64 y = {\mathrm e}^{2 x} \left (\cos \left (2 x \right )-\sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+26 y^{\prime \prime }-40 y^{\prime }+25 y = {\mathrm e}^{2 x} \left (3 \cos \left (x \right )-\left (3 x +1\right ) \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}-2 \cos \left (x \right )+4 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x}-4 \cos \left (x \right )+4 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = -2 x -2+4 \,{\mathrm e}^{x}-6 \,{\mathrm e}^{-x}+96 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+9 y^{\prime }-10 y = 10 \,{\mathrm e}^{2 x}+20 \,{\mathrm e}^{x} \sin \left (2 x \right )-10
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}+9 \cos \left (2 x \right )-13 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 4 \,{\mathrm e}^{-x} \left (1-6 x \right )-2 x \cos \left (x \right )+2 \left (x +1\right ) \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = -12 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x}+10 \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y = -{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (x +1\right )+{\mathrm e}^{-2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = \sinh \left (x \right ) \cos \left (x \right )-\cosh \left (x \right ) \sin \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y = {\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = {\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = {\mathrm e}^{2 x} \left (10+3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = -{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = -2 \,{\mathrm e}^{-x} \left (6 x^{2}-18 x +7\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = -{\mathrm e}^{-x} \left (3 x^{2}-9 x +4\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = {\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x} \left (1-6 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{-x} \left (4-8 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-3 y^{\prime }-y = {\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \left (20-12 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y = 30 \cos \left (x \right )-10 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime } = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 2 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 x y^{\prime }+2 y = 30 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 x y^{\prime }+9 y = 96 x^{{5}/{2}}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 x y^{\prime }+24 y = x^{4}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 12 x^{2}
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 4 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 x y^{\prime }-16 y = 9 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \left (x +1\right )
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 9 x^{2}
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-x y^{\prime }+y = 6 x
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 40 x^{3}
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = F \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = F \left (x \right )
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = F \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = F \left (x \right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{4 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime }+8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }-17 y^{\prime }+60 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+23 y^{\prime }-15 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-20 y^{\prime \prime }+27 y^{\prime }+18 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}12 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+2 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-7 y^{\prime \prime }-8 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+y^{\prime \prime \prime \prime }-13 y^{\prime \prime \prime }-13 y^{\prime \prime }+36 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-15 y^{\prime \prime \prime }-19 y^{\prime \prime }+30 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+3 y^{\prime \prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \tan \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right )
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right )
\] |
[[_3rd_order, _exact, _nonlinear]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 6 x
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y = 8 \,{\mathrm e}^{-x}+1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = x \cos \left (x \right )+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \sin \left (x \right )+50 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \ln \left (x \right )
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{2} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+x = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 5 x
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x^{2} {\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y^{\prime \prime } y\right ) = x
\] |
[[_3rd_order, _exact, _nonlinear]] |
✗ |
|
\[
{}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y^{\prime \prime } y+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x}
\] |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y^{\prime \prime } y-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}}
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x^{2}
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-k^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime }+y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime }-\left (\frac {p^{\prime \prime \prime \prime }\left (x \right )}{30}+\frac {7 p^{\prime \prime }\left (x \right )}{3}+a p \left (x \right )+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime }+\frac {f \left (x \right ) f^{\prime \prime \prime }\left (x \right ) y^{\prime }}{f \left (x \right )^{2}+b^{2}}-\frac {a^{2} {f^{\prime }\left (x \right )}^{2} y}{f \left (x \right )^{2}+b^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-\lambda y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-a \,x^{b} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-3 \left (2 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+b y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+\left (-n^{2}+1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\frac {\left (\left (-n^{2}+1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )-a \right ) y}{2} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-\left (4 n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }-2 n \left (n +1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+\left (A \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+B \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-\left (3 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime }+\left (b +c \operatorname {JacobiSN}\left (z , x\right )^{2}-3 k^{2} \operatorname {JacobiSN}\left (z , x\right ) \operatorname {JacobiCN}\left (z , x\right ) \operatorname {JacobiDN}\left (z , x\right )\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } \sin \left (x \right )-2 y^{\prime } \cos \left (x \right )+y \sin \left (x \right )-\ln \left (x \right ) = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y\right ) = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+\left (f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+3 f \left (x \right ) y^{\prime \prime }+\left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}+4 g \left (x \right )\right ) y^{\prime }+\left (4 f \left (x \right ) g \left (x \right )+2 g^{\prime }\left (x \right )\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}27 y^{\prime \prime \prime }-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }-2 n \left (3+n \right ) \left (4 n -3\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-x y^{\prime }-a y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (-2+x \right ) x y^{\prime \prime \prime }-\left (-2+x \right ) x y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✗ |
|
\[
{}\left (2 x -1\right ) y^{\prime \prime \prime }-8 x y^{\prime }+8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (2 x -1\right ) y^{\prime \prime \prime }+\left (4+x \right ) y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }-6 y^{\prime }+a \,x^{2} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }-y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y-f \left (x \right ) = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime }+a \,x^{2} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-2 \left (n +1\right ) x y^{\prime \prime }+\left (a \,x^{2}+6 n \right ) y^{\prime }-2 a x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime \prime }+8 x y^{\prime \prime }+10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right ) = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (8+x \right ) = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+\left (-a^{2}+1\right ) x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 \left (-a +1\right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 x y^{\prime }-y-2 x^{3} = 0
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) x y^{\prime \prime \prime }+3 \left (2 x^{2}+1\right ) y^{\prime \prime }-12 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (x +2\right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-4 \left (3 x +1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x -a \right )^{3} \left (x -b \right )^{3} y^{\prime \prime \prime }-c y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime } \sin \left (x \right )+\left (2 \cos \left (x \right )+1\right ) y^{\prime \prime }-y^{\prime } \sin \left (x \right )-\cos \left (x \right ) = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (\sin \left (x \right )+x \right ) y^{\prime \prime \prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }-3 y^{\prime } \sin \left (x \right )-y \cos \left (x \right )+\sin \left (x \right ) = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}y^{\prime \prime \prime } \sin \left (x \right )^{2}+3 y^{\prime \prime } \sin \left (x \right ) \cos \left (x \right )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \sin \left (x \right )^{2}\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right ) = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}f^{\prime }\left (x \right ) y^{\prime \prime }+f \left (x \right ) y^{\prime \prime \prime }+g^{\prime }\left (x \right ) y^{\prime }+g \left (x \right ) y^{\prime \prime }+h^{\prime }\left (x \right ) y+h \left (x \right ) y^{\prime }+A \left (x \right ) \left (f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+h \left (x \right ) y\right ) = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+x y^{\prime }+n y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-x y^{\prime }-n y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y-f = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\lambda y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }+\left (a \,x^{2}+b \lambda +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }+a \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime \prime }+b \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\left (c \left (6 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )^{2}-\frac {\operatorname {g2}}{2}\right )+d \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }-\left (12 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime \prime }+b y^{\prime }+\left (\alpha \operatorname {JacobiSN}\left (z , x\right )^{2}+\beta \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 a x y^{\prime \prime \prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a^{3} x^{3} y^{\prime }+a^{4} x^{4} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-24 = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime \prime \prime }-\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16} = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime }-a^{4} x^{3} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (3+n \right ) \left (n -2\right )\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 y x^{4} = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }+a y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 b^{2} c^{2} x^{2 c}+6 \left (a -1\right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (a -1\right )-1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16} = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0
\] |
[[_high_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}f y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right ) = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-a x y-b = 0
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0
\] |
[[_high_order, _missing_y]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }-a y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{10} y^{\left (5\right )}-a y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{{5}/{2}} y^{\left (5\right )}-a y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } y+{y^{\prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+a y y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0
\] |
[[_3rd_order, _exact, _nonlinear]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0
\] |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✗ |
|
\[
{}y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}+1\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}+1\right ) y^{\prime \prime \prime }-\left (3 y^{\prime }+a \right ) {y^{\prime \prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime } \left (f^{\prime \prime \prime }\left (x \right ) y^{\prime }+3 f^{\prime \prime }\left (x \right ) y^{\prime \prime }+3 f^{\prime }\left (x \right ) y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime \prime \prime }\right )-y^{\prime \prime } f y^{\prime \prime \prime }+{y^{\prime }}^{3} \left (f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right ) y^{\prime \prime }\right )+2 q \left (x \right ) {y^{\prime }}^{2} \sin \left (y\right )+\left (q \left (x \right ) y^{\prime \prime }-q^{\prime }\left (x \right ) y^{\prime }\right ) \cos \left (y\right ) = 0
\] |
[NONE] |
✗ |
|
\[
{}3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0
\] |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime } = f \left (y\right )
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = \ln \left (x \right ) x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x}
\] |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1
\] |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x y^{\prime \prime \prime }-y^{\prime \prime }-x y^{\prime }+y = -x^{2}+1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0
\] |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-x^{\prime }-8 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime \prime }-8 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )} = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{x \sqrt {2}} \sin \left (x \sqrt {2}\right )+{\mathrm e}^{-x \sqrt {2}} \cos \left (x \sqrt {2}\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✗ |
|
\[
{}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }+x = t^{3}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}-y = {\mathrm e}^{2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0
\] |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+x y = \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+x y = \cosh \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+x y = \cosh \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\prime \prime \prime } = 1
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right )
\] |
[NONE] |
✗ |
|
\[
{}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right )
\] |
[NONE] |
✗ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime \prime } = 2
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2}
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }+x y^{\prime } = 4
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y^{\prime \prime }
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }}
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime }
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = y^{\prime \prime }
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y
\] |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+216 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 0
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}\frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right )
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime \prime } = 2
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = x
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = x +\cos \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}}
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }-y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = 3 y y^{\prime }
\] |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✗ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )} = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 3
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime } = 2
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = x \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = \sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = -2 x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 2 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime } = 2 y^{\prime }
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0
\] |
[NONE] |
✗ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}\left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}\left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }-y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}{y^{\prime \prime \prime }}^{2}+x^{2} = 1
\] |
[[_3rd_order, _quadrature]] |
✓ |
|
\[
{}a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}}
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}}
\] |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
|
\[
{}y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0
\] |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
✓ |
|
\[
{}40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0
\] |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
✗ |
|
\[
{}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (x +1\right ) {\mathrm e}^{x}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}+3 x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime } = 1
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\left (6\right )}-y = x^{10}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-8 y = 16 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = -x^{3}+1
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime } = \frac {1}{x^{3}}
\] |
[[_high_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = x +1
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x}
\] |
[[_high_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0
\] |
[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]] |
✗ |
|
\[
{}y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y y^{\prime }+3 y^{2} x^{2}\right ) y^{\prime }+x^{3} y^{3} = 0
\] |
|
✗ |
|
\[
{}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime \prime \prime }-y = x^{4}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right )
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3}
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✗ |
|
\[
{}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime } = -\frac {1}{x^{2}}
\] |
[[_3rd_order, _missing_y]] |
✓ |
|