2.5 Table of higher order ODEs

Table 2.477: High order differential equations

#

ODE

CAS classification

Solved?

249

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

250

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

251

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

252

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+8 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

253

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

254

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

255

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

256

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

280

\[ {}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

281

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

282

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]

[[_high_order, _missing_x]]

283

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

284

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

285

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

286

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

287

\[ {}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

288

\[ {}y^{\prime \prime \prime \prime } = 16 y \]

[[_high_order, _missing_x]]

289

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

290

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

294

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

295

\[ {}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

296

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

297

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

298

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

299

\[ {}y^{\prime \prime \prime }+27 y = 0 \]

[[_3rd_order, _missing_x]]

300

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

301

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

302

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

303

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-54 y = 0 \]

[[_3rd_order, _missing_x]]

304

\[ {}3 y^{\prime \prime \prime }-2 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

305

\[ {}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+25 y^{\prime \prime }+20 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

306

\[ {}9 y^{\prime \prime \prime }+11 y^{\prime \prime }+4 y^{\prime }-14 y = 0 \]

[[_3rd_order, _missing_x]]

307

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime } \]
i.c.

[[_high_order, _missing_x]]

308

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

312

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

313

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \]
i.c.

[[_high_order, _missing_x]]

314

\[ {}a \,x^{3} y^{\prime \prime \prime }+b \,x^{2} y^{\prime \prime }+c x y^{\prime }+d y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

317

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

318

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

319

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

320

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

321

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

332

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 3 x -1 \]

[[_3rd_order, _missing_y]]

333

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2-\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

335

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x \,{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

336

\[ {}y^{\left (5\right )}+5 y^{\prime \prime \prime \prime }-y = 17 \]

[[_high_order, _missing_x]]

339

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime }+4 y = {\mathrm e}^{x}-x \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

340

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 x^{2}-1 \]

[[_high_order, _missing_y]]

341

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x}+7 \]

[[_3rd_order, _with_linear_symmetries]]

343

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = {\mathrm e}^{x}+2 x^{2}-5 \]

[[_high_order, _missing_y]]

345

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-12 y^{\prime } = x -2 x \,{\mathrm e}^{-3 x} \]

[[_3rd_order, _missing_y]]

348

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

349

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = \left (x^{2}+1\right ) \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

350

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

356

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = x^{2} \]
i.c.

[[_high_order, _missing_y]]

357

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 1+x \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _missing_y]]

359

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{-x} \]
i.c.

[[_3rd_order, _missing_y]]

360

\[ {}y^{\prime \prime \prime \prime }-y = 5 \]
i.c.

[[_high_order, _missing_x]]

361

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = 8 x^{5} \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

362

\[ {}y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right )^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

425

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

545

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

546

\[ {}x^{\prime \prime \prime \prime }-x = 0 \]
i.c.

[[_high_order, _missing_x]]

547

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]
i.c.

[[_high_order, _missing_x]]

548

\[ {}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0 \]
i.c.

[[_high_order, _missing_x]]

549

\[ {}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0 \]
i.c.

[[_high_order, _missing_x]]

550

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t} \]
i.c.

[[_high_order, _with_linear_symmetries]]

935

\[ {}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

936

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

937

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]

[[_high_order, _missing_x]]

938

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

939

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

940

\[ {}y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

941

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

942

\[ {}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

943

\[ {}y^{\prime \prime \prime \prime } = 16 y \]

[[_high_order, _missing_x]]

944

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

945

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

946

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

947

\[ {}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

948

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

949

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

950

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

951

\[ {}y^{\prime \prime \prime }+27 y = 0 \]

[[_3rd_order, _missing_x]]

952

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

953

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

954

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

955

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

956

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

957

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \]
i.c.

[[_high_order, _missing_x]]

958

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

959

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

960

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

961

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

962

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

1462

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

1463

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

1464

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

1465

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

1466

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

1467

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

1468

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

1469

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

1470

\[ {}\left (-t +2\right ) y^{\prime \prime \prime }+\left (-3+2 t \right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

1471

\[ {}t^{2} \left (3+t \right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

1472

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

1473

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

1474

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

1475

\[ {}y^{\left (6\right )}+y = 0 \]

[[_high_order, _missing_x]]

1476

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

1477

\[ {}y^{\left (6\right )}-y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

1478

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

1479

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

1480

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

1481

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

1482

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]

[[_high_order, _missing_x]]

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

1502

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1513

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2107

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2108

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2109

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2110

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2111

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2112

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2113

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2114

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

2115

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2116

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }-9 y = 0 \]

[[_high_order, _missing_x]]

2117

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+16 y^{\prime }-16 y = 0 \]

[[_3rd_order, _missing_x]]

2118

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

2119

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+9 y^{\prime }+5 y = 0 \]

[[_3rd_order, _missing_x]]

2120

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2121

\[ {}27 y^{\prime \prime \prime }+27 y^{\prime \prime }+9 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

2122

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

2123

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

2124

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

2125

\[ {}16 y^{\prime \prime \prime \prime }-72 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

2126

\[ {}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+7 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

2127

\[ {}4 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+3 y^{\prime \prime }-13 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

2128

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

2129

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2130

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2131

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2132

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2133

\[ {}3 y^{\prime \prime \prime }-y^{\prime \prime }-7 y^{\prime }+5 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2134

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2135

\[ {}2 y^{\prime \prime \prime }-11 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2136

\[ {}8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2137

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2138

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2139

\[ {}4 y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+9 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2140

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2141

\[ {}4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2142

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

2143

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

2144

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

2145

\[ {}y^{\left (6\right )}-y = 0 \]

[[_high_order, _missing_x]]

2146

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

2147

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

2148

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = -{\mathrm e}^{x} \left (-24 x^{2}+76 x +4\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2149

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{-3 x} \left (6 x^{2}-23 x +32\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2150

\[ {}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{x} \left (6 x^{2}+45 x +4\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2151

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{-2 x} \left (3 x^{2}-17 x +2\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2152

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{x} \left (16 x^{3}+24 x^{2}+2 x -1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2153

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = {\mathrm e}^{x} \left (15 x^{2}+34 x +14\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2154

\[ {}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{-2 x} \left (1-15 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2155

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{x} \left (7+6 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2156

\[ {}2 y^{\prime \prime \prime }-7 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (17+30 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2157

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y = 2 \,{\mathrm e}^{3 x} \left (11-24 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2158

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y = 2 \,{\mathrm e}^{4 x} \left (13+15 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2159

\[ {}8 y^{\prime \prime \prime }-12 y^{\prime \prime }+6 y^{\prime }-y = {\mathrm e}^{\frac {x}{2}} \left (1+4 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2160

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }-7 y^{\prime }+6 y = -3 \,{\mathrm e}^{-x} \left (-8 x^{2}+8 x +12\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2161

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-2 y = -3 \,{\mathrm e}^{2 x} \left (11+12 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2162

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime } = -16 \,{\mathrm e}^{-2 x} \left (-x^{3}+x^{2}+x +1\right ) \]

[[_high_order, _missing_y]]

2163

\[ {}4 y^{\prime \prime \prime \prime }-11 y^{\prime \prime }-9 y^{\prime }-2 y = -{\mathrm e}^{x} \left (1-6 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2164

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x^{2}+4 x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2165

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+2 y = {\mathrm e}^{2 x} \left (x^{4}+x +24\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2166

\[ {}2 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-5 y^{\prime }-2 y = 18 \,{\mathrm e}^{x} \left (5+2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2167

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }-4 y = -{\mathrm e}^{2 x} \left (15 x^{2}+28 x +4\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2168

\[ {}2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime }-y = 3 \,{\mathrm e}^{-\frac {x}{2}} \left (1-6 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2169

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{x} \left (-3 x^{2}+x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2170

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (18 x^{2}+33 x +13\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2171

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x} \left (12 x^{2}+26 x +15\right ) \]

[[_high_order, _missing_y]]

2172

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2173

\[ {}2 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \left (11+12 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2174

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \left (10 x^{2}-24 x +5\right ) \]

[[_high_order, _missing_y]]

2175

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (-5 x^{2}-8 x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2176

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (16+10 x \right ) \cos \left (x \right )+\left (30-10 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2177

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = {\mathrm e}^{-x} \left (\left (1-22 x \right ) \cos \left (2 x \right )-\left (1+6 x \right ) \sin \left (2 x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2178

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y = {\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2179

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = -{\mathrm e}^{x} \left (\left (4 x^{2}+5 x +9\right ) \cos \left (2 x \right )-\left (-3 x^{2}-5 x +6\right ) \sin \left (2 x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2180

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }+12 y = 8 \cos \left (2 x \right )-16 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2181

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+2 y = {\mathrm e}^{x} \left (\left (20+4 x \right ) \cos \left (x \right )-\left (12+12 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2182

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+20 y^{\prime }-24 y = -{\mathrm e}^{2 x} \left (\left (13-8 x \right ) \cos \left (2 x \right )-\left (8-4 x \right ) \sin \left (2 x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2183

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+18 y^{\prime } = -{\mathrm e}^{3 x} \left (\left (2-3 x \right ) \cos \left (3 x \right )-\left (3+3 x \right ) \sin \left (3 x \right )\right ) \]

[[_3rd_order, _missing_y]]

2184

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = {\mathrm e}^{x} \left (8 \cos \left (x \right )+16 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2185

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }-4 y = {\mathrm e}^{x} \left (2 \cos \left (2 x \right )-\sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2186

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+15 y = {\mathrm e}^{2 x} \left (15 x \cos \left (2 x \right )+32 \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2187

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+13 y^{\prime \prime }+12 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (4-x \right ) \cos \left (x \right )-\left (x +5\right ) \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2188

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }-4 y = -{\mathrm e}^{-x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2189

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\cos \left (2 x \right )+\sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2190

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+32 y^{\prime \prime }+64 y^{\prime }+39 y = {\mathrm e}^{-2 x} \left (\left (4-15 x \right ) \cos \left (3 x \right )-\left (4+15 x \right ) \sin \left (3 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2191

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\left (7+8 x \right ) \cos \left (2 x \right )+\left (8-4 x \right ) \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2192

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+8 y^{\prime \prime }+8 y^{\prime }+4 y = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2193

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+32 y^{\prime \prime }-64 y^{\prime }+64 y = {\mathrm e}^{2 x} \left (\cos \left (2 x \right )-\sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2194

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+26 y^{\prime \prime }-40 y^{\prime }+25 y = {\mathrm e}^{2 x} \left (3 \cos \left (x \right )-\left (3 x +1\right ) \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2195

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}-2 \cos \left (x \right )+4 \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2196

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x}-4 \cos \left (x \right )+4 \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2197

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x -2+4 \,{\mathrm e}^{x}-6 \,{\mathrm e}^{-x}+96 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

2198

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+9 y^{\prime }-10 y = 10 \,{\mathrm e}^{2 x}+20 \,{\mathrm e}^{x} \sin \left (2 x \right )-10 \]

[[_3rd_order, _linear, _nonhomogeneous]]

2199

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}+9 \cos \left (2 x \right )-13 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2200

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 4 \,{\mathrm e}^{-x} \left (1-6 x \right )-2 x \cos \left (x \right )+2 \left (x +1\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2201

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = -12 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x}+10 \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2202

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y = -{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2203

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (x +1\right )+{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

2204

\[ {}y^{\prime \prime \prime \prime }+4 y = \sinh \left (x \right ) \cos \left (x \right )-\cosh \left (x \right ) \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2205

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y = {\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

2206

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = {\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2207

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = {\mathrm e}^{2 x} \left (10+3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2208

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = -{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2209

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = -2 \,{\mathrm e}^{-x} \left (6 x^{2}-18 x +7\right ) \]

[[_3rd_order, _missing_y]]

2211

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2212

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = -{\mathrm e}^{-x} \left (3 x^{2}-9 x +4\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2214

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right ) \]

[[_high_order, _missing_y]]

2215

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = {\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2216

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x} \left (1-6 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2217

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{-x} \left (4-8 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2218

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }-y = {\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2219

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \left (20-12 x \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2220

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y = 30 \cos \left (x \right )-10 \sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2221

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime } = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]
i.c.

[[_high_order, _missing_y]]

2222

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 2 x \]

[[_3rd_order, _with_linear_symmetries]]

2223

\[ {}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 x y^{\prime }+2 y = 30 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

2224

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2225

\[ {}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 x y^{\prime }+9 y = 96 x^{{5}/{2}} \]

[[_high_order, _with_linear_symmetries]]

2226

\[ {}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 x y^{\prime }+24 y = x^{4} \]

[[_high_order, _with_linear_symmetries]]

2227

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 12 x^{2} \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

2228

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 4 x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2229

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = x^{3} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2230

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 x y^{\prime }-16 y = 9 x^{4} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2231

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \left (x +1\right ) \]
i.c.

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2232

\[ {}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 9 x^{2} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2233

\[ {}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-x y^{\prime }+y = 6 x \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2234

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 40 x^{3} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2235

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = F \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2236

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = F \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2237

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = F \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2238

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = F \left (x \right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

2677

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2710

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

2711

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

2712

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

2713

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2714

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2715

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

2716

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

2717

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

2718

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right ) \]

[[_3rd_order, _missing_y]]

2719

\[ {}y^{\prime \prime \prime \prime }-y = g \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2720

\[ {}y^{\prime \prime \prime \prime }+y = g \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2721

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

2722

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \]

[[_3rd_order, _missing_y]]

2723

\[ {}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2724

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2725

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2} \]

[[_high_order, _missing_y]]

2726

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t} \]

[[_3rd_order, _with_linear_symmetries]]

2727

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t} \]

[[_high_order, _linear, _nonhomogeneous]]

3068

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

3069

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

3070

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

3071

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime }+8 y = 0 \]

[[_high_order, _missing_x]]

3072

\[ {}y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

3073

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

3074

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-17 y^{\prime }+60 y = 0 \]

[[_3rd_order, _missing_x]]

3075

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+23 y^{\prime }-15 y = 0 \]

[[_3rd_order, _missing_x]]

3076

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_high_order, _missing_x]]

3077

\[ {}2 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-20 y^{\prime \prime }+27 y^{\prime }+18 y = 0 \]

[[_high_order, _missing_x]]

3078

\[ {}12 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3079

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

3080

\[ {}4 y^{\prime \prime \prime }+2 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

3081

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = 0 \]

[[_3rd_order, _missing_x]]

3082

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-7 y^{\prime \prime }-8 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

3083

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0 \]

[[_high_order, _missing_x]]

3084

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime }-13 y^{\prime \prime \prime }-13 y^{\prime \prime }+36 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

3085

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-15 y^{\prime \prime \prime }-19 y^{\prime \prime }+30 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3086

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

3087

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3090

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

3091

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

3092

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

3093

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

3094

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

3095

\[ {}4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

3096

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

3097

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

3098

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

3099

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

3101

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0 \]

[[_high_order, _missing_x]]

3102

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

[[_high_order, _missing_x]]

3103

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0 \]

[[_high_order, _missing_x]]

3104

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

3105

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

3106

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0 \]

[[_3rd_order, _missing_x]]

3107

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0 \]

[[_3rd_order, _missing_x]]

3108

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

3109

\[ {}4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0 \]

[[_3rd_order, _missing_x]]

3110

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

3118

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

3124

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8 \]

[[_3rd_order, _missing_y]]

3126

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

3127

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3129

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3130

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3134

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right ) \]

[[_3rd_order, _missing_y]]

3136

\[ {}y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3153

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

3154

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

3157

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

3158

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3159

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3167

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (x \right ) \]

[[_3rd_order, _missing_y]]

3171

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

3181

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

3182

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3183

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3191

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

3192

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

3193

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3194

\[ {}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \]

[[_3rd_order, _missing_y]]

3195

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right ) \]

[[_3rd_order, _missing_y]]

3196

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

3197

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3198

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

3199

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3200

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2} \]

[[_high_order, _missing_y]]

3201

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

3202

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

3203

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3204

\[ {}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3208

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3209

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3211

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3212

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

3229

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

3233

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

3234

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

3235

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

3236

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3491

\[ {}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8 \]

[[_3rd_order, _with_linear_symmetries]]

3498

\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

[[_3rd_order, _exact, _nonlinear]]

3499

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x \]

[[_3rd_order, _missing_y]]

3588

\[ {}y^{\prime \prime \prime } = 6 x \]
i.c.

[[_3rd_order, _quadrature]]

3700

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

3701

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

3702

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0 \]

[[_3rd_order, _missing_x]]

3703

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

3704

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

3705

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3706

\[ {}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

3709

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

3710

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

3713

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

3714

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x} \]

[[_3rd_order, _with_linear_symmetries]]

3715

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

3721

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

3722

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x} \]

[[_3rd_order, _with_linear_symmetries]]

3723

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3730

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3731

\[ {}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \]

[[_high_order, _missing_y]]

3763

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3764

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3765

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3766

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

3795

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

3796

\[ {}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0 \]

[[_3rd_order, _missing_x]]

3799

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

3800

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right ) \]

[[_3rd_order, _missing_y]]

3801

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y = 8 \,{\mathrm e}^{-x}+1 \]

[[_3rd_order, _with_linear_symmetries]]

4142

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

4143

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

4144

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

4145

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

4146

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

4147

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

4148

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

4149

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

4150

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

4151

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

4159

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4160

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

4165

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

4414

\[ {}y^{\prime \prime \prime } = 2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \]

[[_3rd_order, _missing_y]]

4444

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

4445

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

[[_3rd_order, _missing_x]]

4446

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

4447

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

4448

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

4449

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

4450

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

4451

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

4452

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

4453

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

4454

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

4455

\[ {}y^{\left (6\right )}-64 y = 0 \]

[[_high_order, _missing_x]]

4461

\[ {}y^{\prime \prime \prime }+y^{\prime } = x \cos \left (x \right )+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

4462

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4463

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

4464

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

[[_high_order, _missing_y]]

4465

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

4466

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

4467

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4468

\[ {}y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2} \]

[[_3rd_order, _missing_y]]

4469

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x \]

[[_high_order, _missing_y]]

4471

\[ {}y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

4472

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

4473

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

4475

\[ {}y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x} \]

[[_high_order, _with_linear_symmetries]]

4477

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

4478

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

4489

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

4490

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

4491

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4492

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

4493

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \sin \left (x \right )+50 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4494

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4495

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

4496

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

4511

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \ln \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

4513

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

5921

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

5922

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

5923

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

5924

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

[[_high_order, _missing_x]]

5927

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

5929

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

5930

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

5932

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

5933

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

5934

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

5935

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

5936

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

5939

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

[[_high_order, _missing_x]]

5941

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

5942

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

5943

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

5944

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

5949

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

6147

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

6148

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

6149

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

6150

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

6210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

6229

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

6390

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

[[_3rd_order, _missing_x]]

6392

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

[[_high_order, _missing_x]]

6393

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

[[_3rd_order, _missing_x]]

6513

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

6527

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

6528

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \]

[[_3rd_order, _missing_y]]

6529

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

[[_3rd_order, _missing_y]]

6535

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

[[_high_order, _quadrature]]

6555

\[ {}y^{\prime \prime \prime }-y = 5 \]
i.c.

[[_3rd_order, _missing_x]]

6556

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

6557

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x^{2} {\mathrm e}^{x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

6693

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

6697

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

6703

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

6705

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

6708

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

[[_3rd_order, _missing_x]]

6709

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

6710

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

6711

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

6714

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]

[[_3rd_order, _missing_x]]

6715

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5 \]

[[_high_order, _missing_x]]

6716

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

6733

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]

[[_3rd_order, _missing_y]]

6735

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

6739

\[ {}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

6740

\[ {}y^{\prime \prime \prime }+y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

6743

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

6752

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _missing_y]]

6753

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

6776

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_3rd_order, _missing_y]]

6780

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8 \]

[[_3rd_order, _with_linear_symmetries]]

6781

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

6784

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y^{\prime \prime } y\right ) = x \]

[[_3rd_order, _exact, _nonlinear]]

6785

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y^{\prime \prime } y+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

6786

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y^{\prime \prime } y-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

6817

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6818

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7161

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7164

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

[[_high_order, _with_linear_symmetries]]

7202

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

7205

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

7206

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

7207

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

7208

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

[[_high_order, _missing_y]]

7210

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

7215

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

7229

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

7230

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

[[_high_order, _missing_x]]

7258

\[ {}y^{\prime \prime \prime } = x^{2} \]

[[_3rd_order, _quadrature]]

7316

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

7317

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

7318

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

7319

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

[[_3rd_order, _missing_x]]

7320

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

7321

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

7322

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

7323

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

[[_3rd_order, _missing_x]]

7324

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

7325

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

7328

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

7329

\[ {}y^{\left (5\right )}+2 y = 0 \]

[[_high_order, _missing_x]]

7330

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

7331

\[ {}y^{\prime \prime \prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

7332

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

[[_3rd_order, _missing_x]]

7334

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

7335

\[ {}y^{\prime \prime \prime }-y = x \]

[[_3rd_order, _with_linear_symmetries]]

7336

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

[[_3rd_order, _with_linear_symmetries]]

7337

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

7338

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

7339

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

7348

\[ {}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_3rd_order, _quadrature]]

7349

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

7359

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7371

\[ {}y^{\prime \prime \prime }-x y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

7379

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

7482

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

7660

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

7692

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

7693

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

7694

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

7695

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

7696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

7697

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

7698

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

7699

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

7700

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

7701

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

7702

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

7703

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

7704

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

7705

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

7706

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

[[_high_order, _missing_x]]

7707

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

7708

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

[[_high_order, _quadrature]]

7709

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

7710

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]
i.c.

[[_3rd_order, _missing_x]]

7711

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

7712

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

7713

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7714

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_y]]

7836

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7837

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7838

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7839

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8008

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

8009

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

8248

\[ {}y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

8291

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8534

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8548

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

8552

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8553

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

[[_3rd_order, _with_linear_symmetries]]

8554

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_high_order, _with_linear_symmetries]]

8841

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

8846

\[ {}y^{\prime \prime \prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10714

\[ {}y^{\prime \prime }-\left (\frac {p^{\prime \prime \prime \prime }\left (x \right )}{30}+\frac {7 p^{\prime \prime }\left (x \right )}{3}+a p \left (x \right )+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10765

\[ {}y^{\prime \prime }+\frac {f \left (x \right ) f^{\prime \prime \prime }\left (x \right ) y^{\prime }}{f \left (x \right )^{2}+b^{2}}-\frac {a^{2} {f^{\prime }\left (x \right )}^{2} y}{f \left (x \right )^{2}+b^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11128

\[ {}y^{\prime \prime \prime }-\lambda y = 0 \]

[[_3rd_order, _missing_x]]

11129

\[ {}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

11130

\[ {}y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11131

\[ {}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

11132

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

[[_3rd_order, _missing_y]]

11133

\[ {}y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11134

\[ {}y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11135

\[ {}y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11136

\[ {}y^{\prime \prime \prime }-3 \left (2 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11137

\[ {}y^{\prime \prime \prime }+\left (-n^{2}+1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\frac {\left (\left (-n^{2}+1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )-a \right ) y}{2} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11138

\[ {}y^{\prime \prime \prime }-\left (4 n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }-2 n \left (n +1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11139

\[ {}y^{\prime \prime \prime }+\left (A \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+B \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11140

\[ {}y^{\prime \prime \prime }-\left (3 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime }+\left (b +c \operatorname {JacobiSN}\left (z , x\right )^{2}-3 k^{2} \operatorname {JacobiSN}\left (z , x\right ) \operatorname {JacobiCN}\left (z , x\right ) \operatorname {JacobiDN}\left (z , x\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11141

\[ {}y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11142

\[ {}y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11143

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

[[_3rd_order, _missing_x]]

11144

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

11145

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11146

\[ {}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

[[_3rd_order, _missing_x]]

11147

\[ {}y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11148

\[ {}y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11149

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } \sin \left (x \right )-2 y^{\prime } \cos \left (x \right )+y \sin \left (x \right )-\ln \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

11150

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11151

\[ {}y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11152

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+\left (f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11153

\[ {}y^{\prime \prime \prime }+3 f \left (x \right ) y^{\prime \prime }+\left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}+4 g \left (x \right )\right ) y^{\prime }+\left (4 f \left (x \right ) g \left (x \right )+2 g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11154

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11155

\[ {}27 y^{\prime \prime \prime }-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }-2 n \left (3+n \right ) \left (4 n -3\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11156

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11157

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11158

\[ {}x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-x y^{\prime }-a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11159

\[ {}x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11160

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

11161

\[ {}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

11162

\[ {}2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11163

\[ {}2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11164

\[ {}\left (-2+x \right ) x y^{\prime \prime \prime }-\left (-2+x \right ) x y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

11165

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11166

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }+\left (4+x \right ) y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

11167

\[ {}x^{2} y^{\prime \prime \prime }-6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11168

\[ {}x^{2} y^{\prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11169

\[ {}x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

11170

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y \]

[[_3rd_order, _with_linear_symmetries]]

11171

\[ {}x^{2} y^{\prime \prime \prime }-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11172

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y-f \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

11173

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

11174

\[ {}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

11175

\[ {}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11176

\[ {}x^{2} y^{\prime \prime \prime }-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11177

\[ {}x^{2} y^{\prime \prime \prime }-2 \left (n +1\right ) x y^{\prime \prime }+\left (a \,x^{2}+6 n \right ) y^{\prime }-2 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11178

\[ {}x^{2} y^{\prime \prime \prime }-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11179

\[ {}x^{2} y^{\prime \prime \prime }-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11180

\[ {}x^{2} y^{\prime \prime \prime }-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11181

\[ {}x^{2} y^{\prime \prime \prime }-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11182

\[ {}\left (x^{2}+1\right ) y^{\prime \prime \prime }+8 x y^{\prime \prime }+10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

11183

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11184

\[ {}2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11185

\[ {}x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11186

\[ {}x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11187

\[ {}x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11188

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (8+x \right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11189

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+\left (-a^{2}+1\right ) x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

11190

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11191

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11192

\[ {}x^{3} y^{\prime \prime \prime }+3 \left (-a +1\right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11193

\[ {}x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11194

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 x y^{\prime }-y-2 x^{3} = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

11195

\[ {}\left (x^{2}+1\right ) x y^{\prime \prime \prime }+3 \left (2 x^{2}+1\right ) y^{\prime \prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11196

\[ {}\left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (x +2\right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11197

\[ {}2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11198

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-4 \left (3 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11199

\[ {}4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0 \]

[[_3rd_order, _missing_y]]

11200

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11201

\[ {}x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11202

\[ {}x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11203

\[ {}x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11204

\[ {}\left (x -a \right )^{3} \left (x -b \right )^{3} y^{\prime \prime \prime }-c y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11205

\[ {}y^{\prime \prime \prime } \sin \left (x \right )+\left (2 \cos \left (x \right )+1\right ) y^{\prime \prime }-y^{\prime } \sin \left (x \right )-\cos \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

11206

\[ {}\left (\sin \left (x \right )+x \right ) y^{\prime \prime \prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }-3 y^{\prime } \sin \left (x \right )-y \cos \left (x \right )+\sin \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

11207

\[ {}y^{\prime \prime \prime } \sin \left (x \right )^{2}+3 y^{\prime \prime } \sin \left (x \right ) \cos \left (x \right )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \sin \left (x \right )^{2}\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11208

\[ {}f^{\prime }\left (x \right ) y^{\prime \prime }+f \left (x \right ) y^{\prime \prime \prime }+g^{\prime }\left (x \right ) y^{\prime }+g \left (x \right ) y^{\prime \prime }+h^{\prime }\left (x \right ) y+h \left (x \right ) y^{\prime }+A \left (x \right ) \left (f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+h \left (x \right ) y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11209

\[ {}y^{\prime \prime \prime }+x y^{\prime }+n y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11210

\[ {}y^{\prime \prime \prime }-x y^{\prime }-n y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11211

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

11212

\[ {}y^{\prime \prime \prime \prime }+4 y-f = 0 \]

[[_high_order, _missing_x]]

11213

\[ {}y^{\prime \prime \prime \prime }+\lambda y = 0 \]

[[_high_order, _missing_x]]

11214

\[ {}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11215

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11216

\[ {}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0 \]

[[_high_order, _missing_x]]

11217

\[ {}y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \]

[[_high_order, _with_linear_symmetries]]

11218

\[ {}y^{\prime \prime \prime \prime }+\left (a \,x^{2}+b \lambda +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11219

\[ {}y^{\prime \prime \prime \prime }+a \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime \prime }+b \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\left (c \left (6 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )^{2}-\frac {\operatorname {g2}}{2}\right )+d \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11220

\[ {}y^{\prime \prime \prime \prime }-\left (12 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime \prime }+b y^{\prime }+\left (\alpha \operatorname {JacobiSN}\left (z , x\right )^{2}+\beta \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11221

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11222

\[ {}y^{\prime \prime \prime \prime }+4 a x y^{\prime \prime \prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a^{3} x^{3} y^{\prime }+a^{4} x^{4} y = 0 \]

[[_high_order, _with_linear_symmetries]]

11223

\[ {}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0 \]

[[_high_order, _missing_y]]

11224

\[ {}x y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-24 = 0 \]

[[_high_order, _missing_y]]

11225

\[ {}x y^{\prime \prime \prime \prime }-\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y = 0 \]

[[_high_order, _with_linear_symmetries]]

11226

\[ {}x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11227

\[ {}x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11228

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

11229

\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

11230

\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

11231

\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

11232

\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

11233

\[ {}x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16} = 0 \]

[[_high_order, _with_linear_symmetries]]

11234

\[ {}x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime }-a^{4} x^{3} y = 0 \]

[[_high_order, _with_linear_symmetries]]

11235

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

11236

\[ {}x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (3+n \right ) \left (n -2\right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11237

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 y x^{4} = 0 \]

[[_high_order, _with_linear_symmetries]]

11238

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11239

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11240

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11241

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11242

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

11243

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }+a y = 0 \]

[[_high_order, _with_linear_symmetries]]

11244

\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 b^{2} c^{2} x^{2 c}+6 \left (a -1\right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (a -1\right )-1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11245

\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11246

\[ {}\nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16} = 0 \]

[[_high_order, _with_linear_symmetries]]

11247

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11248

\[ {}\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0 \]

[[_high_order, _fully, _exact, _linear]]

11249

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

11250

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11251

\[ {}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0 \]

[[_high_order, _missing_x]]

11252

\[ {}f y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

11253

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right ) = 0 \]

[[_high_order, _with_linear_symmetries]]

11254

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0 \]

[[_high_order, _missing_y]]

11255

\[ {}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11256

\[ {}y^{\left (5\right )}-a x y-b = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

11257

\[ {}y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y = 0 \]

[[_high_order, _with_linear_symmetries]]

11258

\[ {}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0 \]

[[_high_order, _missing_x]]

11259

\[ {}x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y = 0 \]

[[_high_order, _with_linear_symmetries]]

11260

\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

[[_high_order, _missing_x]]

11261

\[ {}x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

[[_high_order, _missing_y]]

11262

\[ {}x^{2} y^{\prime \prime \prime \prime }-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

11263

\[ {}x^{10} y^{\left (5\right )}-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

11264

\[ {}x^{{5}/{2}} y^{\left (5\right )}-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

11265

\[ {}\left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

[[_high_order, _with_linear_symmetries]]

11512

\[ {}y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

11513

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11514

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } y+{y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11515

\[ {}y^{\prime \prime \prime }+a y y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11516

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

[[_3rd_order, _exact, _nonlinear]]

11517

\[ {}x^{2} y^{\prime \prime \prime }+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

11518

\[ {}y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

11519

\[ {}4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11520

\[ {}9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11521

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x]]

11522

\[ {}\left ({y^{\prime }}^{2}+1\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

11523

\[ {}\left ({y^{\prime }}^{2}+1\right ) y^{\prime \prime \prime }-\left (3 y^{\prime }+a \right ) {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

11524

\[ {}y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

11525

\[ {}y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

11526

\[ {}y^{\prime } \left (f^{\prime \prime \prime }\left (x \right ) y^{\prime }+3 f^{\prime \prime }\left (x \right ) y^{\prime \prime }+3 f^{\prime }\left (x \right ) y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime \prime \prime }\right )-y^{\prime \prime } f y^{\prime \prime \prime }+{y^{\prime }}^{3} \left (f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right ) y^{\prime \prime }\right )+2 q \left (x \right ) {y^{\prime }}^{2} \sin \left (y\right )+\left (q \left (x \right ) y^{\prime \prime }-q^{\prime }\left (x \right ) y^{\prime }\right ) \cos \left (y\right ) = 0 \]

[NONE]

11527

\[ {}3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

11528

\[ {}9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

11530

\[ {}y^{\prime \prime \prime } = f \left (y\right ) \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

12597

\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12598

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

12599

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

12600

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

12601

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

[[_high_order, _missing_x]]

12602

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12603

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

12604

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12605

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

12607

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12610

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

12612

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

[[_3rd_order, _with_linear_symmetries]]

12619

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

12620

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

12621

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

[[_high_order, _with_linear_symmetries]]

12623

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12624

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = \ln \left (x \right ) x \]

[[_3rd_order, _with_linear_symmetries]]

12625

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

12629

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12631

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

12632

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12633

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

12634

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

[[_3rd_order, _missing_y]]

12637

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_high_order, _with_linear_symmetries]]

12639

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

12640

\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12665

\[ {}\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

12673

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12674

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }-x y^{\prime }+y = -x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

12675

\[ {}\left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1 \]

[[_3rd_order, _missing_y]]

12678

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12679

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

12682

\[ {}x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12691

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12698

\[ {}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

12853

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12854

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

[[_3rd_order, _missing_x]]

12855

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

12856

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

12857

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

[[_3rd_order, _missing_y]]

12858

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

12859

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]
i.c.

[[_3rd_order, _missing_x]]

12931

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

12932

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

12933

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12944

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13073

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

13074

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13087

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

13088

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

13095

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

13096

\[ {}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

13097

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

13098

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

13099

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

13100

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

13101

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

13102

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

13103

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

13104

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

13105

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

13106

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

13121

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13122

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13123

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13124

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13125

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

13126

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

[[_high_order, _missing_x]]

13135

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

13136

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13137

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

[[_3rd_order, _linear, _nonhomogeneous]]

13138

\[ {}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

[[_3rd_order, _linear, _nonhomogeneous]]

13141

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13142

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13143

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

13144

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

[[_high_order, _missing_y]]

13145

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13146

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13149

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

[[_high_order, _missing_y]]

13150

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13165

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13166

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13172

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \]

[[_3rd_order, _missing_y]]

13173

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13174

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13175

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

13176

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

13177

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13178

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{x \sqrt {2}} \sin \left (x \sqrt {2}\right )+{\mathrm e}^{-x \sqrt {2}} \cos \left (x \sqrt {2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13179

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13180

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13206

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

13217

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13218

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

13219

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13225

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

13330

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13331

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13339

\[ {}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13341

\[ {}t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13456

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

[[_3rd_order, _with_linear_symmetries]]

13457

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13458

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13459

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

[[_high_order, _with_linear_symmetries]]

13578

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

13586

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

13587

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

13588

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

13589

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

[[_high_order, _with_linear_symmetries]]

13600

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

13605

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

[[_high_order, _missing_y]]

13606

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13609

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

13613

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

13614

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

13615

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

13635

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13637

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

[[_high_order, _missing_y]]

13638

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

13639

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13641

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13647

\[ {}y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

13650

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

[NONE]

13652

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

13655

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

[NONE]

13657

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

13659

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

13706

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

13714

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13715

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13716

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13717

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13718

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13720

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]
i.c.

[[_high_order, _missing_x]]

13757

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]
i.c.

[[_3rd_order, _missing_x]]

13758

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13759

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13760

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13761

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13762

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13771

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

[[_3rd_order, _missing_x]]

13773

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

13834

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

13901

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

13903

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

13911

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

13912

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

13922

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

13923

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

13924

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

[[_3rd_order, _missing_x]]

13925

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

13926

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

13927

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

13928

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

13929

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

[[_high_order, _missing_x]]

13940

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

[[_3rd_order, _with_linear_symmetries]]

13941

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13942

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

14001

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

14020

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14157

\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \]
i.c.

[[_3rd_order, _missing_y]]

14167

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14173

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

14174

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

14175

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

14176

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

14177

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

14178

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

14179

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

14180

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

[[_high_order, _missing_x]]

14181

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

14183

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

14184

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

14186

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

14187

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

[[_high_order, _missing_y]]

14188

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

14189

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

[[_high_order, _missing_y]]

14190

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14191

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14192

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

14193

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14194

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

14195

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

14196

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]
i.c.

[[_high_order, _with_linear_symmetries]]

14203

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

14210

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

14218

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14676

\[ {}y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _quadrature]]

14900

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

[[_3rd_order, _missing_x]]

14901

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

[[_3rd_order, _missing_y]]

14902

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

14903

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

[[_high_order, _missing_x]]

14923

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]
i.c.

[[_3rd_order, _missing_x]]

14924

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]
i.c.

[[_3rd_order, _missing_y]]

14943

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

14946

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

[[_high_order, _missing_x]]

14947

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

14968

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

[[_3rd_order, _missing_x]]

14969

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14970

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

14971

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14983

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14984

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

14989

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

14990

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

15029

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

15030

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

15031

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

[[_high_order, _missing_x]]

15032

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

[[_high_order, _missing_x]]

15033

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

15034

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

15035

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

15036

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

15037

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

[[_3rd_order, _missing_x]]

15038

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

[[_3rd_order, _missing_x]]

15039

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

15040

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

[[_high_order, _missing_x]]

15041

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15042

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15043

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]
i.c.

[[_high_order, _missing_x]]

15044

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

15045

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

15046

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

[[_3rd_order, _missing_x]]

15047

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

15048

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

15049

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

15050

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

15051

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

15052

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

15053

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

[[_high_order, _missing_x]]

15054

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

15079

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15080

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15081

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15082

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15083

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

[[_high_order, _with_linear_symmetries]]

15084

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

15085

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_high_order, _with_linear_symmetries]]

15086

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

15096

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]
i.c.

[[_high_order, _missing_x]]

15163

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

[[_high_order, _missing_y]]

15164

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

15165

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

15166

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

[[_high_order, _missing_y]]

15167

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

15168

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15169

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

15170

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

[[_high_order, _missing_y]]

15171

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

15172

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

15173

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15174

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15175

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15176

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

15205

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

15206

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

15207

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

15208

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15209

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

15210

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

15218

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

15223

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

15233

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

[[_3rd_order, _missing_x]]

15236

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

15257

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

[[_3rd_order, _with_linear_symmetries]]

15258

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

[[_high_order, _with_linear_symmetries]]

15273

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15321

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

15322

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

15459

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

15474

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

15475

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

15500

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15501

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15515

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]
i.c.

[[_high_order, _missing_x]]

16043

\[ {}y^{\prime \prime \prime } = 0 \]

[[_3rd_order, _quadrature]]

16044

\[ {}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16045

\[ {}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

16046

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

16047

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

16048

\[ {}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

16049

\[ {}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

16050

\[ {}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

16051

\[ {}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

[[_3rd_order, _missing_x]]

16052

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

16053

\[ {}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

16054

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

16055

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

[[_high_order, _missing_x]]

16056

\[ {}y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

[[_high_order, _missing_x]]

16057

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

[[_high_order, _missing_x]]

16058

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

16059

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

16060

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

16061

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

16062

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

16063

\[ {}y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

16064

\[ {}y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

16065

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16066

\[ {}y^{\prime \prime \prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16067

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

16068

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

16069

\[ {}24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16070

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

16071

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

16072

\[ {}8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

16073

\[ {}2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

16074

\[ {}y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

16075

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

16076

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

[[_3rd_order, _missing_x]]

16077

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

[[_high_order, _missing_x]]

16078

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16079

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]
i.c.

[[_high_order, _missing_x]]

16080

\[ {}\frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16082

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

[[_3rd_order, _missing_y]]

16083

\[ {}y^{\prime \prime \prime \prime }-16 y = 1 \]

[[_high_order, _missing_x]]

16084

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

16085

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

16086

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

[[_high_order, _missing_y]]

16087

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

16088

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

16089

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

[[_high_order, _with_linear_symmetries]]

16090

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

16091

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

[[_high_order, _with_linear_symmetries]]

16092

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

16093

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

16094

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

[[_high_order, _missing_y]]

16095

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

[[_high_order, _missing_y]]

16096

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

[[_3rd_order, _missing_y]]

16097

\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

[[_3rd_order, _missing_y]]

16098

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

16099

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

[[_3rd_order, _missing_y]]

16100

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

16101

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

[[_3rd_order, _with_linear_symmetries]]

16102

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

[[_3rd_order, _with_linear_symmetries]]

16103

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

16104

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

[[_3rd_order, _missing_y]]

16105

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

[[_high_order, _missing_x]]

16106

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

[[_high_order, _missing_y]]

16107

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]
i.c.

[[_3rd_order, _missing_y]]

16108

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]
i.c.

[[_high_order, _missing_y]]

16109

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]
i.c.

[[_3rd_order, _missing_y]]

16110

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_high_order, _missing_y]]

16111

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]
i.c.

[[_high_order, _missing_y]]

16112

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

[[_3rd_order, _missing_y]]

16113

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t \]

[[_3rd_order, _missing_y]]

16114

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16115

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}} \]
i.c.

[[_high_order, _missing_y]]

16128

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16129

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16130

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16131

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

16132

\[ {}x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16133

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

16134

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

16135

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_y]]

16144

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

[[_3rd_order, _with_linear_symmetries]]

16145

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

[[_3rd_order, _with_linear_symmetries]]

16150

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16151

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16152

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16153

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16161

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16162

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16163

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16164

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

[[_3rd_order, _missing_y]]

16176

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16177

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

[[_high_order, _with_linear_symmetries]]

16178

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

16179

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

[[_high_order, _with_linear_symmetries]]

16180

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

[[_high_order, _with_linear_symmetries]]

16181

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16248

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16249

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16250

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16261

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

16262

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

16263

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16264

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

[[_high_order, _with_linear_symmetries]]

16583

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

16591

\[ {}y^{\prime \prime \prime \prime } = x \]

[[_high_order, _quadrature]]

16592

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

[[_3rd_order, _quadrature]]

16603

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

16604

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

16614

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

16627

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]
i.c.

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

16630

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16633

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

16635

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

16637

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

16638

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

16641

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

[[_high_order, _missing_x]]

16642

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

16643

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

16644

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16645

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

16646

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

16647

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

16648

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16649

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16666

\[ {}y^{\prime \prime \prime }+y = x \]

[[_3rd_order, _with_linear_symmetries]]

16667

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

[[_3rd_order, _missing_x]]

16668

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

[[_3rd_order, _missing_x]]

16669

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

16670

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

[[_high_order, _missing_x]]

16671

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

[[_high_order, _missing_x]]

16672

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

[[_high_order, _missing_x]]

16673

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

[[_high_order, _missing_x]]

16674

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

16675

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

16676

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

16677

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

16678

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16679

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16680

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16681

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16682

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16683

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16684

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

16685

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

16689

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

[[_3rd_order, _missing_x]]

16690

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

16691

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

[[_high_order, _missing_x]]

16692

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

[[_high_order, _missing_x]]

16693

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

[[_high_order, _missing_x]]

16716

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

[[_3rd_order, _with_linear_symmetries]]

16717

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

16719

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

[[_high_order, _missing_y]]

16722

\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

16723

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16724

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

16730

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \]

[[_3rd_order, _missing_y]]

16731

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

16741

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

[[_high_order, _linear, _nonhomogeneous]]

16743

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

[[_high_order, _missing_y]]

16759

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

[[_3rd_order, _missing_y]]

16761

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

16762

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

[[_3rd_order, _missing_y]]

16763

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

[[_high_order, _missing_y]]

16764

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

16779

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]
i.c.

[[_3rd_order, _missing_y]]

16780

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]
i.c.

[[_high_order, _with_linear_symmetries]]

16781

\[ {}y^{\prime \prime \prime }-y = 2 x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16782

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]
i.c.

[[_high_order, _with_linear_symmetries]]

16799

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16800

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

[[_3rd_order, _missing_y]]

16801

\[ {}\left (x +1\right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16802

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16832

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

[[_3rd_order, _missing_y]]

16869

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16870

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

16872

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

16873

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

16881

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c.

[NONE]

17396

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

17397

\[ {}y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17411

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

17412

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

17413

\[ {}y^{\prime \prime \prime \prime }-9 y = 0 \]
i.c.

[[_high_order, _missing_x]]

17436

\[ {}y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17437

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17452

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17464

\[ {}y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17465

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17470

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

17471

\[ {}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

17472

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

17473

\[ {}y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

17474

\[ {}\left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

17475

\[ {}\left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

[[_high_order, _with_linear_symmetries]]

17476

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

17477

\[ {}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

17478

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

17479

\[ {}y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

17480

\[ {}\left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

17481

\[ {}\left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

[[_high_order, _with_linear_symmetries]]

17484

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

17485

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

17486

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

[[_3rd_order, _missing_x]]

17487

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

17488

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

17489

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

17646

\[ {}{y^{\prime \prime \prime }}^{2}+x^{2} = 1 \]

[[_3rd_order, _quadrature]]

17648

\[ {}a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

17649

\[ {}y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

17651

\[ {}y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

17665

\[ {}5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

17666

\[ {}40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

17669

\[ {}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

17670

\[ {}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

17674

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

17675

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

17676

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

17679

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12 \]

[[_3rd_order, _linear, _nonhomogeneous]]

17680

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

17686

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

17687

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

17688

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

17689

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

17691

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

17694

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

17695

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

17706

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}+3 x \]

[[_3rd_order, _with_linear_symmetries]]

17778

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

18033

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

18034

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

18035

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

18036

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

18037

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

18038

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

18039

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

18040

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

18041

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

18042

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

18043

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

18044

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

18045

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

18046

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

18047

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

[[_high_order, _missing_x]]

18048

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

18049

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

[[_high_order, _quadrature]]

18050

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

18051

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]
i.c.

[[_3rd_order, _missing_x]]

18052

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

18053

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

18054

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18055

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_y]]

18063

\[ {}y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5 \]

[[_3rd_order, _linear, _nonhomogeneous]]

18065

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

18066

\[ {}y^{\left (6\right )}-y = x^{10} \]

[[_high_order, _linear, _nonhomogeneous]]

18069

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]

[[_3rd_order, _missing_y]]

18070

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1 \]

[[_3rd_order, _missing_y]]

18074

\[ {}y^{\prime \prime \prime }-8 y = 16 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

18075

\[ {}y^{\prime \prime \prime \prime }-y = -x^{3}+1 \]

[[_high_order, _linear, _nonhomogeneous]]

18076

\[ {}y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x \]

[[_3rd_order, _missing_y]]

18077

\[ {}y^{\prime \prime \prime \prime } = \frac {1}{x^{3}} \]

[[_high_order, _quadrature]]

18078

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = x +1 \]

[[_3rd_order, _missing_y]]

18079

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \]

[[_3rd_order, _missing_y]]

18080

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

18081

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x} \]

[[_3rd_order, _with_linear_symmetries]]

18260

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

[[_high_order, _missing_x]]

18265

\[ {}x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t} \]

[[_high_order, _missing_y]]

18266

\[ {}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6} \]

[[_high_order, _missing_y]]

18267

\[ {}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

18268

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

18269

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x} \]

[[_high_order, _missing_y]]

18270

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

18274

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18281

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

18288

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

18290

\[ {}y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y y^{\prime }+3 y^{2} x^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

18293

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18333

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

18334

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

18335

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

18336

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

18337

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

18338

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

18339

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

18341

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

18344

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

18345

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \]

[[_3rd_order, _with_linear_symmetries]]

18349

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x \]

[[_3rd_order, _with_linear_symmetries]]

18351

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

18352

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

18353

\[ {}y^{\prime \prime \prime \prime }-y = x^{4} \]

[[_high_order, _linear, _nonhomogeneous]]

18360

\[ {}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2} \]

[[_3rd_order, _missing_y]]

18362

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

18363

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

18364

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

18372

\[ {}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

[[_3rd_order, _fully, _exact, _linear]]

18373

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime } = -\frac {1}{x^{2}} \]

[[_3rd_order, _missing_y]]