2.5 Table of higher order ODEs

Table 2.421: High order differential equations

#

ODE

CAS classification

Solved?

249

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

250

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

251

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

252

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+8 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

253

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

254

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

255

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

256

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

280

\[ {}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

281

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

282

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]

[[_high_order, _missing_x]]

283

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

284

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

285

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

286

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

287

\[ {}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

288

\[ {}y^{\prime \prime \prime \prime } = 16 y \]

[[_high_order, _missing_x]]

289

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

290

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

294

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

295

\[ {}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

296

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

297

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

298

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

299

\[ {}y^{\prime \prime \prime }+27 y = 0 \]

[[_3rd_order, _missing_x]]

300

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

301

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

302

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

307

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime } \]
i.c.

[[_high_order, _missing_x]]

312

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

313

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \]
i.c.

[[_high_order, _missing_x]]

314

\[ {}a \,x^{3} y^{\prime \prime \prime }+b \,x^{2} y^{\prime \prime }+c x y^{\prime }+d y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

317

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

318

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

319

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

320

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

321

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

332

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 3 x -1 \]

[[_3rd_order, _missing_y]]

333

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2-\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

335

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x \,{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

336

\[ {}y^{\left (5\right )}+5 y^{\prime \prime \prime \prime }-y = 17 \]

[[_high_order, _missing_x]]

339

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime }+4 y = {\mathrm e}^{x}-x \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

340

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 x^{2}-1 \]

[[_high_order, _missing_y]]

341

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x}+7 \]

[[_3rd_order, _with_linear_symmetries]]

343

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = {\mathrm e}^{x}+2 x^{2}-5 \]

[[_high_order, _missing_y]]

345

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-12 y^{\prime } = x -2 x \,{\mathrm e}^{-3 x} \]

[[_3rd_order, _missing_y]]

348

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

349

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = \left (x^{2}+1\right ) \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

350

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

356

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = x^{2} \]
i.c.

[[_high_order, _missing_y]]

357

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 1+x \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _missing_y]]

359

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{-x} \]
i.c.

[[_3rd_order, _missing_y]]

360

\[ {}y^{\prime \prime \prime \prime }-y = 5 \]
i.c.

[[_high_order, _missing_x]]

361

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = 8 x^{5} \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

362

\[ {}y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right )^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

425

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

545

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

546

\[ {}x^{\prime \prime \prime \prime }-x = 0 \]
i.c.

[[_high_order, _missing_x]]

547

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]
i.c.

[[_high_order, _missing_x]]

548

\[ {}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0 \]
i.c.

[[_high_order, _missing_x]]

549

\[ {}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0 \]
i.c.

[[_high_order, _missing_x]]

550

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t} \]
i.c.

[[_high_order, _with_linear_symmetries]]

935

\[ {}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

936

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

937

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]

[[_high_order, _missing_x]]

938

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

939

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

940

\[ {}y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

941

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

942

\[ {}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

943

\[ {}y^{\prime \prime \prime \prime } = 16 y \]

[[_high_order, _missing_x]]

944

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

945

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

946

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

947

\[ {}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

948

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

949

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

950

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

951

\[ {}y^{\prime \prime \prime }+27 y = 0 \]

[[_3rd_order, _missing_x]]

952

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

953

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

954

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

955

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

956

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

957

\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \]
i.c.

[[_high_order, _missing_x]]

958

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

959

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

960

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

961

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

962

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

1462

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

1463

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

1464

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

1465

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

1466

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

1467

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

1468

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

1469

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

1470

\[ {}\left (-t +2\right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

1471

\[ {}t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (1+t \right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

1472

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

1473

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

1474

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

1475

\[ {}y^{\left (6\right )}+y = 0 \]

[[_high_order, _missing_x]]

1476

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

1477

\[ {}y^{\left (6\right )}-y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

1478

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

1479

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

1480

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

1481

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

1482

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]

[[_high_order, _missing_x]]

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

1502

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1513

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2107

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2108

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2109

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2110

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2111

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2112

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2113

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2114

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

2115

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2116

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }-9 y = 0 \]

[[_high_order, _missing_x]]

2117

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+16 y^{\prime }-16 y = 0 \]

[[_3rd_order, _missing_x]]

2118

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

2119

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+9 y^{\prime }+5 y = 0 \]

[[_3rd_order, _missing_x]]

2120

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2121

\[ {}27 y^{\prime \prime \prime }+27 y^{\prime \prime }+9 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

2122

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

2123

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

2124

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

2125

\[ {}16 y^{\prime \prime \prime \prime }-72 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

2126

\[ {}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+7 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

2127

\[ {}4 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+3 y^{\prime \prime }-13 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

2128

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

2129

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2130

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2131

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2132

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2133

\[ {}3 y^{\prime \prime \prime }-y^{\prime \prime }-7 y^{\prime }+5 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2134

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2135

\[ {}2 y^{\prime \prime \prime }-11 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2136

\[ {}8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

2137

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2138

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2139

\[ {}4 y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+9 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2140

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2141

\[ {}4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2142

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

2143

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

2144

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

2145

\[ {}y^{\left (6\right )}-y = 0 \]

[[_high_order, _missing_x]]

2146

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

2147

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

2148

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = -{\mathrm e}^{x} \left (-24 x^{2}+76 x +4\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2149

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{-3 x} \left (6 x^{2}-23 x +32\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2150

\[ {}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{x} \left (6 x^{2}+45 x +4\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2151

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{-2 x} \left (3 x^{2}-17 x +2\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2152

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = {\mathrm e}^{x} \left (16 x^{3}+24 x^{2}+2 x -1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2153

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = {\mathrm e}^{x} \left (15 x^{2}+34 x +14\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2154

\[ {}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{-2 x} \left (1-15 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2155

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{x} \left (7+6 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2156

\[ {}2 y^{\prime \prime \prime }-7 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (17+30 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2157

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y = 2 \,{\mathrm e}^{3 x} \left (11-24 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2158

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y = 2 \,{\mathrm e}^{4 x} \left (13+15 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2159

\[ {}8 y^{\prime \prime \prime }-12 y^{\prime \prime }+6 y^{\prime }-y = {\mathrm e}^{\frac {x}{2}} \left (1+4 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2160

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }-7 y^{\prime }+6 y = -3 \,{\mathrm e}^{-x} \left (-8 x^{2}+8 x +12\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2161

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-2 y = -3 \,{\mathrm e}^{2 x} \left (11+12 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2162

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime } = -16 \,{\mathrm e}^{-2 x} \left (-x^{3}+x^{2}+x +1\right ) \]

[[_high_order, _missing_y]]

2163

\[ {}4 y^{\prime \prime \prime \prime }-11 y^{\prime \prime }-9 y^{\prime }-2 y = -{\mathrm e}^{x} \left (1-6 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2164

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x^{2}+4 x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2165

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+2 y = {\mathrm e}^{2 x} \left (x^{4}+x +24\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2166

\[ {}2 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-5 y^{\prime }-2 y = 18 \,{\mathrm e}^{x} \left (5+2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2167

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }-4 y = -{\mathrm e}^{2 x} \left (15 x^{2}+28 x +4\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2168

\[ {}2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime }-y = 3 \,{\mathrm e}^{-\frac {x}{2}} \left (1-6 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2169

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{x} \left (-3 x^{2}+x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2170

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{2 x} \left (18 x^{2}+33 x +13\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2171

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x} \left (12 x^{2}+26 x +15\right ) \]

[[_high_order, _missing_y]]

2172

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2173

\[ {}2 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \left (11+12 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2174

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \left (10 x^{2}-24 x +5\right ) \]

[[_high_order, _missing_y]]

2175

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (-5 x^{2}-8 x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2176

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (16+10 x \right ) \cos \left (x \right )+\left (30-10 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2177

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = {\mathrm e}^{-x} \left (\left (1-22 x \right ) \cos \left (2 x \right )-\left (1+6 x \right ) \sin \left (2 x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2178

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y = {\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2179

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = -{\mathrm e}^{x} \left (\left (4 x^{2}+5 x +9\right ) \cos \left (2 x \right )-\left (-3 x^{2}-5 x +6\right ) \sin \left (2 x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2180

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }+12 y = 8 \cos \left (2 x \right )-16 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2181

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+2 y = {\mathrm e}^{x} \left (\left (20+4 x \right ) \cos \left (x \right )-\left (12+12 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2182

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+20 y^{\prime }-24 y = -{\mathrm e}^{2 x} \left (\left (13-8 x \right ) \cos \left (2 x \right )-\left (8-4 x \right ) \sin \left (2 x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2183

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+18 y^{\prime } = -{\mathrm e}^{3 x} \left (\left (2-3 x \right ) \cos \left (3 x \right )-\left (3+3 x \right ) \sin \left (3 x \right )\right ) \]

[[_3rd_order, _missing_y]]

2184

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = {\mathrm e}^{x} \left (8 \cos \left (x \right )+16 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2185

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }-4 y = {\mathrm e}^{x} \left (2 \cos \left (2 x \right )-\sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2186

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+15 y = {\mathrm e}^{2 x} \left (15 x \cos \left (2 x \right )+32 \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2187

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+13 y^{\prime \prime }+12 y^{\prime }+4 y = {\mathrm e}^{-x} \left (\left (4-x \right ) \cos \left (x \right )-\left (5+x \right ) \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2188

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }-4 y = -{\mathrm e}^{-x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2189

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\cos \left (2 x \right )+\sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2190

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+32 y^{\prime \prime }+64 y^{\prime }+39 y = {\mathrm e}^{-2 x} \left (\left (4-15 x \right ) \cos \left (3 x \right )-\left (4+15 x \right ) \sin \left (3 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2191

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y = {\mathrm e}^{x} \left (\left (7+8 x \right ) \cos \left (2 x \right )+\left (8-4 x \right ) \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2192

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+8 y^{\prime \prime }+8 y^{\prime }+4 y = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2193

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+32 y^{\prime \prime }-64 y^{\prime }+64 y = {\mathrm e}^{2 x} \left (\cos \left (2 x \right )-\sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2194

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+26 y^{\prime \prime }-40 y^{\prime }+25 y = {\mathrm e}^{2 x} \left (3 \cos \left (x \right )-\left (3 x +1\right ) \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2195

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}-2 \cos \left (x \right )+4 \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2196

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x}-4 \cos \left (x \right )+4 \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2197

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2-2 x +4 \,{\mathrm e}^{x}-6 \,{\mathrm e}^{-x}+96 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

2198

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+9 y^{\prime }-10 y = 10 \,{\mathrm e}^{2 x}+20 \,{\mathrm e}^{x} \sin \left (2 x \right )-10 \]

[[_3rd_order, _linear, _nonhomogeneous]]

2199

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}+9 \cos \left (2 x \right )-13 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2200

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 4 \,{\mathrm e}^{-x} \left (1-6 x \right )-2 x \cos \left (x \right )+2 \left (x +1\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2201

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = -12 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x}+10 \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2202

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y = -{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2203

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (x +1\right )+{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

2204

\[ {}y^{\prime \prime \prime \prime }+4 y = \sinh \left (x \right ) \cos \left (x \right )-\cosh \left (x \right ) \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2205

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y = {\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

2206

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = {\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2207

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = {\mathrm e}^{2 x} \left (10+3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2208

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = -{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2209

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = -2 \,{\mathrm e}^{-x} \left (6 x^{2}-18 x +7\right ) \]

[[_3rd_order, _missing_y]]

2211

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2212

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = -{\mathrm e}^{-x} \left (3 x^{2}-9 x +4\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2214

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right ) \]

[[_high_order, _missing_y]]

2215

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = {\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2216

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x} \left (1-6 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2217

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{-x} \left (4-8 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2218

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }-y = {\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2219

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \left (20-12 x \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2220

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y = 30 \cos \left (x \right )-10 \sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

2221

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime } = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]
i.c.

[[_high_order, _missing_y]]

2222

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 2 x \]

[[_3rd_order, _with_linear_symmetries]]

2223

\[ {}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 y^{\prime } x +2 y = 30 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

2224

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2225

\[ {}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 y^{\prime } x +9 y = 96 x^{{5}/{2}} \]

[[_high_order, _with_linear_symmetries]]

2226

\[ {}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 y^{\prime } x +24 y = x^{4} \]

[[_high_order, _with_linear_symmetries]]

2227

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 12 x^{2} \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

2228

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 4 x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2229

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = x^{3} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2230

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 y^{\prime } x -16 y = 9 x^{4} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2231

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x +1\right ) x \]
i.c.

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2232

\[ {}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 9 x^{2} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2233

\[ {}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-y^{\prime } x +y = 6 x \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2234

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y = 40 x^{3} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2235

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = F \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

2236

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = F \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2237

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = F \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2238

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = F \left (x \right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

2677

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2710

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

2711

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

2712

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

2713

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

2714

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0 \]
i.c.

[[_high_order, _missing_x]]

2715

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

2716

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

2718

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right ) \]

[[_3rd_order, _missing_y]]

2719

\[ {}y^{\prime \prime \prime \prime }-y = g \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2720

\[ {}y^{\prime \prime \prime \prime }+y = g \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2721

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

2722

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \]

[[_3rd_order, _missing_y]]

2723

\[ {}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2724

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2725

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2} \]

[[_high_order, _missing_y]]

2726

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t} \]

[[_3rd_order, _with_linear_symmetries]]

2727

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t} \]

[[_high_order, _linear, _nonhomogeneous]]

3001

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

3002

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

3003

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

3004

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime }+8 y = 0 \]

[[_high_order, _missing_x]]

3005

\[ {}y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

3006

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

3007

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-17 y^{\prime }+60 y = 0 \]

[[_3rd_order, _missing_x]]

3008

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+23 y^{\prime }-15 y = 0 \]

[[_3rd_order, _missing_x]]

3009

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_high_order, _missing_x]]

3010

\[ {}2 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-20 y^{\prime \prime }+27 y^{\prime }+18 y = 0 \]

[[_high_order, _missing_x]]

3011

\[ {}12 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3012

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

3013

\[ {}4 y^{\prime \prime \prime }+2 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

3014

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = 0 \]

[[_3rd_order, _missing_x]]

3015

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-7 y^{\prime \prime }-8 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

3016

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0 \]

[[_high_order, _missing_x]]

3017

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime }-13 y^{\prime \prime \prime }-13 y^{\prime \prime }+36 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

3018

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-15 y^{\prime \prime \prime }-19 y^{\prime \prime }+30 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3019

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

3020

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3023

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

3024

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

3025

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

3026

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

3027

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

3028

\[ {}4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

3029

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

3030

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

3031

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

3032

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

3034

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0 \]

[[_high_order, _missing_x]]

3035

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

[[_high_order, _missing_x]]

3036

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0 \]

[[_high_order, _missing_x]]

3037

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

3038

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

3039

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0 \]

[[_3rd_order, _missing_x]]

3040

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0 \]

[[_3rd_order, _missing_x]]

3041

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

3042

\[ {}4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0 \]

[[_3rd_order, _missing_x]]

3043

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

3051

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

3057

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8 \]

[[_3rd_order, _missing_y]]

3059

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

3060

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3062

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3063

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3067

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right ) \]

[[_3rd_order, _missing_y]]

3069

\[ {}y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3086

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

3087

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

3090

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

3091

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3092

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3100

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (x \right ) \]

[[_3rd_order, _missing_y]]

3104

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

3114

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

3115

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3116

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3124

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

3125

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

3126

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3127

\[ {}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \]

[[_3rd_order, _missing_y]]

3128

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right ) \]

[[_3rd_order, _missing_y]]

3129

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

3130

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3131

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

3132

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3133

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2} \]

[[_high_order, _missing_y]]

3134

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

3135

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

3136

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3137

\[ {}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

3141

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3142

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3144

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3145

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

3146

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

3162

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

3166

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

3167

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 y^{\prime } x +10 y = \frac {4}{x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

3168

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 y^{\prime } x -6 y = \cos \left (\ln \left (x \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

3169

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3424

\[ {}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8 \]

[[_3rd_order, _with_linear_symmetries]]

3431

\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

[[_3rd_order, _exact, _nonlinear]]

3432

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x \]

[[_3rd_order, _missing_y]]

3521

\[ {}y^{\prime \prime \prime } = 6 x \]
i.c.

[[_3rd_order, _quadrature]]

3633

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

3634

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

3635

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0 \]

[[_3rd_order, _missing_x]]

3636

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

3637

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

3638

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

3639

\[ {}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

3642

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

3643

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

3646

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

3647

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x} \]

[[_3rd_order, _with_linear_symmetries]]

3648

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

3654

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

3655

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x} \]

[[_3rd_order, _with_linear_symmetries]]

3656

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3663

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3664

\[ {}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \]

[[_high_order, _missing_y]]

3696

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3697

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3698

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1} \]

[[_3rd_order, _linear, _nonhomogeneous]]

3699

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

3728

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

3729

\[ {}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0 \]

[[_3rd_order, _missing_x]]

3732

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

3733

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right ) \]

[[_3rd_order, _missing_y]]

3734

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y = 8 \,{\mathrm e}^{-x}+1 \]

[[_3rd_order, _with_linear_symmetries]]

4146

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

4147

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

[[_3rd_order, _missing_x]]

4148

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

4149

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

4150

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

4151

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

4152

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

4153

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

4154

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

4155

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

4156

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

4157

\[ {}y^{\left (6\right )}-64 y = 0 \]

[[_high_order, _missing_x]]

4163

\[ {}y^{\prime \prime \prime }+y^{\prime } = x \cos \left (x \right )+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

4164

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

4165

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

4166

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

[[_high_order, _missing_y]]

4167

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

5481

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

5482

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

5483

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

5484

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

[[_high_order, _missing_x]]

5487

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

5489

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

5490

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

5492

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

5493

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

5494

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

5495

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

5496

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

5499

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

[[_high_order, _missing_x]]

5501

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

5502

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

5503

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

5504

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

5509

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

5707

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

5708

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

5709

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

5710

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

5770

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

5789

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

5950

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

[[_3rd_order, _missing_x]]

5952

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

[[_high_order, _missing_x]]

5953

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

[[_3rd_order, _missing_x]]

6073

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

6087

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}+1 \]

[[_3rd_order, _with_linear_symmetries]]

6088

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \]

[[_3rd_order, _missing_y]]

6089

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

[[_3rd_order, _missing_y]]

6095

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

[[_high_order, _quadrature]]

6115

\[ {}y^{\prime \prime \prime }-y = 5 \]
i.c.

[[_3rd_order, _missing_x]]

6116

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

6117

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x^{2} {\mathrm e}^{x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

6253

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

6257

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

6263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

6265

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

6268

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

[[_3rd_order, _missing_x]]

6269

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

6270

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

6271

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

6274

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]

[[_3rd_order, _missing_x]]

6275

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5 \]

[[_high_order, _missing_x]]

6276

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

6293

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]

[[_3rd_order, _missing_y]]

6295

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

6299

\[ {}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

6300

\[ {}y^{\prime \prime \prime }+y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

6303

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

6312

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _missing_y]]

6313

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

6336

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_3rd_order, _missing_y]]

6340

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 y^{\prime } x -4 y = 8 \]

[[_3rd_order, _with_linear_symmetries]]

6341

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

6344

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

[[_3rd_order, _exact, _nonlinear]]

6345

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

6346

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

6377

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6378

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6721

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6724

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

[[_high_order, _with_linear_symmetries]]

6762

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

6765

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

6766

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

6767

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

6768

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

[[_high_order, _missing_y]]

6770

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

6775

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

6789

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

6790

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

[[_high_order, _missing_x]]

6818

\[ {}y^{\prime \prime \prime } = x^{2} \]

[[_3rd_order, _quadrature]]

6876

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

6877

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

6878

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

6879

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

[[_3rd_order, _missing_x]]

6880

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

6881

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

6882

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

6883

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

[[_3rd_order, _missing_x]]

6884

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

6885

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

6888

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

6889

\[ {}y^{\left (5\right )}+2 y = 0 \]

[[_high_order, _missing_x]]

6890

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

6891

\[ {}y^{\prime \prime \prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

6892

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

[[_3rd_order, _missing_x]]

6894

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

6895

\[ {}y^{\prime \prime \prime }-y = x \]

[[_3rd_order, _with_linear_symmetries]]

6896

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

[[_3rd_order, _with_linear_symmetries]]

6897

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

6898

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

6899

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

6908

\[ {}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_3rd_order, _quadrature]]

6909

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

6919

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6931

\[ {}y^{\prime \prime \prime }-y x = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

6939

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

7042

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

7220

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

7252

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

7253

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

7254

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

7255

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

7256

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

7257

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

7258

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

7259

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

7260

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

7261

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

7262

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

7263

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

7264

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

7265

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

7266

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

[[_high_order, _missing_x]]

7267

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

7268

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

[[_high_order, _quadrature]]

7269

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

7270

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]
i.c.

[[_3rd_order, _missing_x]]

7271

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

7272

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

7273

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7274

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_y]]

7396

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7397

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7398

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7399

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7568

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

7569

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

7808

\[ {}y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

7851

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8094

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8108

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

8112

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8113

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = x \]

[[_3rd_order, _with_linear_symmetries]]

8114

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_high_order, _with_linear_symmetries]]

8387

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

8392

\[ {}y^{\prime \prime \prime }-y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10260

\[ {}y^{\prime \prime }-\left (\frac {p^{\prime \prime \prime \prime }\left (x \right )}{30}+\frac {7 p^{\prime \prime }\left (x \right )}{3}+a p \left (x \right )+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10311

\[ {}y^{\prime \prime }+\frac {f \left (x \right ) f^{\prime \prime \prime }\left (x \right ) y^{\prime }}{f \left (x \right )^{2}+b^{2}}-\frac {a^{2} {f^{\prime }\left (x \right )}^{2} y}{f \left (x \right )^{2}+b^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10674

\[ {}y^{\prime \prime \prime }-\lambda y = 0 \]

[[_3rd_order, _missing_x]]

10675

\[ {}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

10676

\[ {}y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10677

\[ {}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

10678

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

[[_3rd_order, _missing_y]]

10679

\[ {}y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10680

\[ {}y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10681

\[ {}y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10682

\[ {}y^{\prime \prime \prime }-3 \left (2 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10683

\[ {}y^{\prime \prime \prime }+\left (-n^{2}+1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\frac {\left (\left (-n^{2}+1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )-a \right ) y}{2} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10684

\[ {}y^{\prime \prime \prime }-\left (4 n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }-2 n \left (n +1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10685

\[ {}y^{\prime \prime \prime }+\left (A \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+B \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10686

\[ {}y^{\prime \prime \prime }-\left (3 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime }+\left (b +c \operatorname {JacobiSN}\left (z , x\right )^{2}-3 k^{2} \operatorname {JacobiSN}\left (z , x\right ) \operatorname {JacobiCN}\left (z , x\right ) \operatorname {JacobiDN}\left (z , x\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10687

\[ {}y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10688

\[ {}y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10689

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

[[_3rd_order, _missing_x]]

10690

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

10691

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10692

\[ {}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

[[_3rd_order, _missing_x]]

10693

\[ {}y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10694

\[ {}y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10695

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } \sin \left (x \right )-2 y^{\prime } \cos \left (x \right )+y \sin \left (x \right )-\ln \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

10696

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10697

\[ {}y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10698

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+\left (f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10699

\[ {}y^{\prime \prime \prime }+3 f \left (x \right ) y^{\prime \prime }+\left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}+4 g \left (x \right )\right ) y^{\prime }+\left (4 f \left (x \right ) g \left (x \right )+2 g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10700

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10701

\[ {}27 y^{\prime \prime \prime }-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }-2 n \left (n +3\right ) \left (4 n -3\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10702

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }+y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10703

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10704

\[ {}x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-y^{\prime } x -a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10705

\[ {}x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10706

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-f \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

10707

\[ {}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

10708

\[ {}2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10709

\[ {}2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10710

\[ {}\left (x -2\right ) x y^{\prime \prime \prime }-\left (x -2\right ) x y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

10711

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10712

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }+\left (x +4\right ) y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

10713

\[ {}x^{2} y^{\prime \prime \prime }-6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10714

\[ {}x^{2} y^{\prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10715

\[ {}x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

10716

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y \]

[[_3rd_order, _with_linear_symmetries]]

10717

\[ {}x^{2} y^{\prime \prime \prime }-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10718

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 y x -f \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

10719

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

10720

\[ {}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

10721

\[ {}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10722

\[ {}x^{2} y^{\prime \prime \prime }-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10723

\[ {}x^{2} y^{\prime \prime \prime }-2 \left (n +1\right ) x y^{\prime \prime }+\left (a \,x^{2}+6 n \right ) y^{\prime }-2 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10724

\[ {}x^{2} y^{\prime \prime \prime }-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10725

\[ {}x^{2} y^{\prime \prime \prime }-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10726

\[ {}x^{2} y^{\prime \prime \prime }-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10727

\[ {}x^{2} y^{\prime \prime \prime }-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10728

\[ {}\left (x^{2}+1\right ) y^{\prime \prime \prime }+8 x y^{\prime \prime }+10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

10729

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10730

\[ {}2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10731

\[ {}x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10732

\[ {}x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10733

\[ {}x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10734

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (x +8\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10735

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+\left (-a^{2}+1\right ) x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

10736

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10737

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10738

\[ {}x^{3} y^{\prime \prime \prime }+3 \left (1-a \right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10739

\[ {}x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10740

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 y^{\prime } x -y-2 x^{3} = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

10741

\[ {}\left (x^{2}+1\right ) x y^{\prime \prime \prime }+3 \left (2 x^{2}+1\right ) y^{\prime \prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10742

\[ {}\left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (x +2\right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10743

\[ {}2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10744

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-4 \left (3 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10745

\[ {}4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0 \]

[[_3rd_order, _missing_y]]

10746

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10747

\[ {}x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10748

\[ {}x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10749

\[ {}x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10750

\[ {}\left (x -a \right )^{3} \left (x -b \right )^{3} y^{\prime \prime \prime }-c y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10751

\[ {}y^{\prime \prime \prime } \sin \left (x \right )+\left (2 \cos \left (x \right )+1\right ) y^{\prime \prime }-y^{\prime } \sin \left (x \right )-\cos \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

10752

\[ {}\left (\sin \left (x \right )+x \right ) y^{\prime \prime \prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }-3 y^{\prime } \sin \left (x \right )-y \cos \left (x \right )+\sin \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

10753

\[ {}y^{\prime \prime \prime } \sin \left (x \right )^{2}+3 y^{\prime \prime } \sin \left (x \right ) \cos \left (x \right )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \sin \left (x \right )^{2}\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10754

\[ {}f^{\prime }\left (x \right ) y^{\prime \prime }+f \left (x \right ) y^{\prime \prime \prime }+g^{\prime }\left (x \right ) y^{\prime }+g \left (x \right ) y^{\prime \prime }+h^{\prime }\left (x \right ) y+h \left (x \right ) y^{\prime }+A \left (x \right ) \left (f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+h \left (x \right ) y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10755

\[ {}y^{\prime \prime \prime }+y^{\prime } x +n y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10756

\[ {}y^{\prime \prime \prime }-y^{\prime } x -n y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

10757

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

10758

\[ {}y^{\prime \prime \prime \prime }+4 y-f = 0 \]

[[_high_order, _missing_x]]

10759

\[ {}y^{\prime \prime \prime \prime }+\lambda y = 0 \]

[[_high_order, _missing_x]]

10760

\[ {}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10761

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10762

\[ {}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0 \]

[[_high_order, _missing_x]]

10763

\[ {}y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \]

[[_high_order, _with_linear_symmetries]]

10764

\[ {}y^{\prime \prime \prime \prime }+\left (a \,x^{2}+b \lambda +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10765

\[ {}y^{\prime \prime \prime \prime }+a \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime \prime }+b \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\left (c \left (6 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )^{2}-\frac {\operatorname {g2}}{2}\right )+d \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10766

\[ {}y^{\prime \prime \prime \prime }-\left (12 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime \prime }+b y^{\prime }+\left (\alpha \operatorname {JacobiSN}\left (z , x\right )^{2}+\beta \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10767

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10768

\[ {}y^{\prime \prime \prime \prime }+4 a x y^{\prime \prime \prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a^{3} x^{3} y^{\prime }+a^{4} x^{4} y = 0 \]

[[_high_order, _with_linear_symmetries]]

10769

\[ {}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0 \]

[[_high_order, _missing_y]]

10770

\[ {}x y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-24 = 0 \]

[[_high_order, _missing_y]]

10771

\[ {}x y^{\prime \prime \prime \prime }-\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y = 0 \]

[[_high_order, _with_linear_symmetries]]

10772

\[ {}x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10773

\[ {}x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10774

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

10775

\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

10776

\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

10777

\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

10778

\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

10779

\[ {}x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16} = 0 \]

[[_high_order, _with_linear_symmetries]]

10780

\[ {}x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime }-a^{4} x^{3} y = 0 \]

[[_high_order, _with_linear_symmetries]]

10781

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

10782

\[ {}x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (n +3\right ) \left (n -2\right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10783

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 y x^{4} = 0 \]

[[_high_order, _with_linear_symmetries]]

10784

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10785

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10786

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10787

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10788

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

10789

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }+a y = 0 \]

[[_high_order, _with_linear_symmetries]]

10790

\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 b^{2} c^{2} x^{2 c}+6 \left (a -1\right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (a -1\right )-1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10791

\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10792

\[ {}\nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16} = 0 \]

[[_high_order, _with_linear_symmetries]]

10793

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10794

\[ {}\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0 \]

[[_high_order, _fully, _exact, _linear]]

10795

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

10796

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10797

\[ {}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0 \]

[[_high_order, _missing_x]]

10798

\[ {}f y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

10799

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right ) = 0 \]

[[_high_order, _with_linear_symmetries]]

10800

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0 \]

[[_high_order, _missing_y]]

10801

\[ {}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10802

\[ {}y^{\left (5\right )}-a x y-b = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

10803

\[ {}y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y = 0 \]

[[_high_order, _with_linear_symmetries]]

10804

\[ {}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0 \]

[[_high_order, _missing_x]]

10805

\[ {}x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y = 0 \]

[[_high_order, _with_linear_symmetries]]

10806

\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

[[_high_order, _missing_x]]

10807

\[ {}x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

[[_high_order, _missing_y]]

10808

\[ {}x^{2} y^{\prime \prime \prime \prime }-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

10809

\[ {}x^{10} y^{\left (5\right )}-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

10810

\[ {}x^{{5}/{2}} y^{\left (5\right )}-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

10811

\[ {}\left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

[[_high_order, _with_linear_symmetries]]

11058

\[ {}y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

11059

\[ {}y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11060

\[ {}y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11061

\[ {}y^{\prime \prime \prime }+a y y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11062

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 y x -1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

[[_3rd_order, _exact, _nonlinear]]

11063

\[ {}x^{2} y^{\prime \prime \prime }+x \left (-1+y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

11064

\[ {}y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

11065

\[ {}4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11066

\[ {}9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

11067

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x]]

11068

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

11069

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-\left (3 y^{\prime }+a \right ) {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

11070

\[ {}y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

11071

\[ {}y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

11072

\[ {}y^{\prime } \left (f^{\prime \prime \prime }\left (x \right ) y^{\prime }+3 f^{\prime \prime }\left (x \right ) y^{\prime \prime }+3 f^{\prime }\left (x \right ) y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime \prime \prime }\right )-y^{\prime \prime } f y^{\prime \prime \prime }+{y^{\prime }}^{3} \left (f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right ) y^{\prime \prime }\right )+2 q \left (x \right ) {y^{\prime }}^{2} \sin \left (y\right )+\left (q \left (x \right ) y^{\prime \prime }-q^{\prime }\left (x \right ) y^{\prime }\right ) \cos \left (y\right ) = 0 \]

[NONE]

11073

\[ {}3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

11074

\[ {}9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

11076

\[ {}y^{\prime \prime \prime } = f \left (y\right ) \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

12143

\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12144

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

12145

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

12146

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

12147

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

[[_high_order, _missing_x]]

12148

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12149

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

12150

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12151

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

12153

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12156

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

12158

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

[[_3rd_order, _with_linear_symmetries]]

12165

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

12166

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

12167

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

[[_high_order, _with_linear_symmetries]]

12169

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12170

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = x \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

12171

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

12175

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12177

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

12178

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12179

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

12180

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

[[_3rd_order, _missing_y]]

12183

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_high_order, _with_linear_symmetries]]

12185

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

12186

\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12211

\[ {}\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

12219

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12220

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime } x +y = -x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

12221

\[ {}\left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1 \]

[[_3rd_order, _missing_y]]

12224

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12225

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

12228

\[ {}x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12237

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 y^{\prime } x +6 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12244

\[ {}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

12399

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

12400

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

[[_3rd_order, _missing_x]]

12401

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

12402

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

12403

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

[[_3rd_order, _missing_y]]

12404

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

12405

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]
i.c.

[[_3rd_order, _missing_x]]

12477

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

12478

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

12479

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12490

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

12619

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

12620

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12633

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

12634

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

12641

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

12642

\[ {}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

12643

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

12644

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

12645

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

12646

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

12647

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

12648

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

12649

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

12650

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

12651

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

12652

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

12667

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

12668

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

12669

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

12670

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

12671

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

12672

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

[[_high_order, _missing_x]]

12681

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

12682

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12683

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

[[_3rd_order, _linear, _nonhomogeneous]]

12684

\[ {}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

[[_3rd_order, _linear, _nonhomogeneous]]

12687

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12688

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12689

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

12690

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

[[_high_order, _missing_y]]

12691

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12692

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12695

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

[[_high_order, _missing_y]]

12696

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12711

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

12712

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

12718

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \]

[[_3rd_order, _missing_y]]

12719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12720

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12721

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

12722

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

12723

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12724

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12725

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12726

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12752

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

12763

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12764

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

12765

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

12771

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

12942

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

[[_3rd_order, _with_linear_symmetries]]

12943

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

12944

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

12945

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

[[_high_order, _with_linear_symmetries]]

13064

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

13072

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

13073

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

13074

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

13075

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

[[_high_order, _with_linear_symmetries]]

13086

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

13091

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

[[_high_order, _missing_y]]

13092

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13095

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

13099

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

13100

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

13101

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

13121

\[ {}y^{\prime \prime \prime }+y x = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13123

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

[[_high_order, _missing_y]]

13124

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

13125

\[ {}y^{\prime \prime \prime }+y x = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13127

\[ {}y^{\prime \prime \prime }+y x = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13133

\[ {}y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

13136

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

[NONE]

13138

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

13141

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

[NONE]

13143

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

13145

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

13192

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

13200

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13201

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13202

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13203

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13204

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13205

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13206

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]
i.c.

[[_high_order, _missing_x]]

13243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]
i.c.

[[_3rd_order, _missing_x]]

13244

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13245

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13246

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13247

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13248

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13257

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

[[_3rd_order, _missing_x]]

13259

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

13320

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

13387

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

13389

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

13397

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

13398

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

13408

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

13409

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

13410

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

[[_3rd_order, _missing_x]]

13411

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

13412

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

13413

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

13414

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

13415

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

[[_high_order, _missing_x]]

13426

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

[[_3rd_order, _with_linear_symmetries]]

13427

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13428

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13487

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

13506

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13643

\[ {}x y^{\prime \prime \prime }+y^{\prime } x = 4 \]
i.c.

[[_3rd_order, _missing_y]]

13653

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13659

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

13660

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

13661

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

13662

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

13663

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

13664

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

13665

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

13666

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

[[_high_order, _missing_x]]

13667

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

13669

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

13670

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

13672

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

13673

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

[[_high_order, _missing_y]]

13674

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13675

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

[[_high_order, _missing_y]]

13676

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13677

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

13678

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

13679

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13680

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

13681

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13682

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]
i.c.

[[_high_order, _with_linear_symmetries]]

13689

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

13696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

13704

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14162

\[ {}y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _quadrature]]

14386

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

[[_3rd_order, _missing_x]]

14387

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

[[_3rd_order, _missing_y]]

14388

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

14389

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

[[_high_order, _missing_x]]

14409

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]
i.c.

[[_3rd_order, _missing_x]]

14410

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]
i.c.

[[_3rd_order, _missing_y]]

14429

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

14432

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

[[_high_order, _missing_x]]

14433

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

14454

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

[[_3rd_order, _missing_x]]

14455

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14456

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

14457

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14469

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14470

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

14475

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

14476

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

14515

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

14516

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

14517

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

[[_high_order, _missing_x]]

14518

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

[[_high_order, _missing_x]]

14519

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

14520

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

14521

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

14522

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

14523

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

[[_3rd_order, _missing_x]]

14524

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

[[_3rd_order, _missing_x]]

14525

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

14526

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

[[_high_order, _missing_x]]

14527

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14528

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14529

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]
i.c.

[[_high_order, _missing_x]]

14530

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

14531

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

14532

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

[[_3rd_order, _missing_x]]

14533

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

14534

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

14535

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

14536

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

14537

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

14538

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

[[_high_order, _missing_x]]

14539

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

[[_high_order, _missing_x]]

14540

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

14565

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14566

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14567

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14568

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14569

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 y^{\prime } x +16 y = 0 \]

[[_high_order, _with_linear_symmetries]]

14570

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

14571

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_high_order, _with_linear_symmetries]]

14572

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

14582

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]
i.c.

[[_high_order, _missing_x]]

14649

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

[[_high_order, _missing_y]]

14650

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

14651

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

14652

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

[[_high_order, _missing_y]]

14653

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

14654

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14655

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

14656

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

[[_high_order, _missing_y]]

14657

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

14658

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_high_order, _missing_y]]

14659

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14660

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14661

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14662

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

14691

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

14692

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

14693

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = {\mathrm e}^{-x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

14694

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

14695

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

14696

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 12 x \sin \left (x^{2}\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

14704

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

14709

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

14719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

[[_3rd_order, _missing_x]]

14722

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

14743

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

[[_3rd_order, _with_linear_symmetries]]

14744

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

[[_high_order, _with_linear_symmetries]]

14759

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

14807

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

14808

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

14945

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

14960

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

14961

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

14986

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

14987

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15001

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]
i.c.

[[_high_order, _missing_x]]

15529

\[ {}y^{\prime \prime \prime } = 0 \]

[[_3rd_order, _quadrature]]

15530

\[ {}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

15531

\[ {}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

15532

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

15533

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

15534

\[ {}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

15535

\[ {}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

15536

\[ {}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

15537

\[ {}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

[[_3rd_order, _missing_x]]

15538

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

15539

\[ {}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

15540

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

15541

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

[[_high_order, _missing_x]]

15542

\[ {}y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

[[_high_order, _missing_x]]

15543

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

[[_high_order, _missing_x]]

15544

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

15545

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

15546

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

15547

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

15548

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

15549

\[ {}y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

15550

\[ {}y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

15551

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15552

\[ {}y^{\prime \prime \prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15553

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

15554

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

15555

\[ {}24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15556

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

15557

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

15558

\[ {}8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

15559

\[ {}2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

15560

\[ {}y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

15561

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

15562

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

[[_3rd_order, _missing_x]]

15563

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

[[_high_order, _missing_x]]

15564

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15565

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]
i.c.

[[_high_order, _missing_x]]

15566

\[ {}\frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]
i.c.

[[_3rd_order, _missing_x]]

15568

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

[[_3rd_order, _missing_y]]

15569

\[ {}y^{\prime \prime \prime \prime }-16 y = 1 \]

[[_high_order, _missing_x]]

15570

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

15571

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

15572

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

[[_high_order, _missing_y]]

15573

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15574

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

15575

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

[[_high_order, _with_linear_symmetries]]

15576

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

15577

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

[[_high_order, _with_linear_symmetries]]

15578

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

15579

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

15580

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

[[_high_order, _missing_y]]

15581

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

[[_high_order, _missing_y]]

15582

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

[[_3rd_order, _missing_y]]

15583

\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

[[_3rd_order, _missing_y]]

15584

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

15585

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

[[_3rd_order, _missing_y]]

15586

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

15587

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

[[_3rd_order, _with_linear_symmetries]]

15588

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

[[_3rd_order, _with_linear_symmetries]]

15589

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

15590

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

[[_3rd_order, _missing_y]]

15591

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

[[_high_order, _missing_x]]

15592

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

[[_high_order, _missing_y]]

15593

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]
i.c.

[[_3rd_order, _missing_y]]

15594

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]
i.c.

[[_high_order, _missing_y]]

15595

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]
i.c.

[[_3rd_order, _missing_y]]

15596

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_high_order, _missing_y]]

15597

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]
i.c.

[[_high_order, _missing_y]]

15598

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

[[_3rd_order, _missing_y]]

15599

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t \]

[[_3rd_order, _missing_y]]

15600

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15601

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}} \]
i.c.

[[_high_order, _missing_y]]

15614

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 y^{\prime } x +140 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15615

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15616

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15617

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

15618

\[ {}x^{3} y^{\prime \prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15619

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

15620

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

15621

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_y]]

15630

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 y^{\prime } x +16 y = \frac {1}{x^{3}} \]

[[_3rd_order, _with_linear_symmetries]]

15631

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 y^{\prime } x +80 y = \frac {1}{x^{13}} \]

[[_3rd_order, _with_linear_symmetries]]

15636

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15637

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15638

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15639

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 y^{\prime } x -17 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15647

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

15648

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

15649

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15650

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = -8 \]

[[_3rd_order, _missing_y]]

15662

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 y^{\prime } x +125 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15663

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 y^{\prime } x +48 y = 0 \]

[[_high_order, _with_linear_symmetries]]

15664

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 y^{\prime } x +15 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

15665

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 y^{\prime } x +45 y = 0 \]

[[_high_order, _with_linear_symmetries]]

15666

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 y^{\prime } x +4 y = 0 \]

[[_high_order, _with_linear_symmetries]]

15667

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 y^{\prime } x +58 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

15734

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

15735

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

15736

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

15747

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

15748

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

15749

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

15750

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

[[_high_order, _with_linear_symmetries]]

16069

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

16077

\[ {}y^{\prime \prime \prime \prime } = x \]

[[_high_order, _quadrature]]

16078

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

[[_3rd_order, _quadrature]]

16089

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

16090

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

16100

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

16113

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]
i.c.

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

16116

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16119

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

16121

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

16123

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

16124

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

16127

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

[[_high_order, _missing_x]]

16128

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

16129

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

16130

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16131

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

16132

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

16133

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

16134

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

16135

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16152

\[ {}y^{\prime \prime \prime }+y = x \]

[[_3rd_order, _with_linear_symmetries]]

16153

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

[[_3rd_order, _missing_x]]

16154

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

[[_3rd_order, _missing_x]]

16155

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

16156

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

[[_high_order, _missing_x]]

16157

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

[[_high_order, _missing_x]]

16158

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

[[_high_order, _missing_x]]

16159

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

[[_high_order, _missing_x]]

16160

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

16161

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

16162

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

16163

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

16164

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16165

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16166

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16167

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16168

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16169

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16170

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

16171

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

16175

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

[[_3rd_order, _missing_x]]

16176

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

16177

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

[[_high_order, _missing_x]]

16178

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

[[_high_order, _missing_x]]

16179

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

[[_high_order, _missing_x]]

16202

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

[[_3rd_order, _with_linear_symmetries]]

16203

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

16205

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

[[_high_order, _missing_y]]

16208

\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

16209

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

16210

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

16216

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1 \]

[[_3rd_order, _missing_y]]

16217

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

16227

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

[[_high_order, _linear, _nonhomogeneous]]

16229

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

[[_high_order, _missing_y]]

16245

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \]

[[_3rd_order, _missing_y]]

16247

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

16248

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

[[_3rd_order, _missing_y]]

16249

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

[[_high_order, _missing_y]]

16250

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

16265

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]
i.c.

[[_3rd_order, _missing_y]]

16266

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]
i.c.

[[_high_order, _with_linear_symmetries]]

16267

\[ {}y^{\prime \prime \prime }-y = 2 x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16268

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]
i.c.

[[_high_order, _with_linear_symmetries]]

16285

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16286

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

[[_3rd_order, _missing_y]]

16287

\[ {}\left (x +1\right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16288

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

16318

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

[[_3rd_order, _missing_y]]

16355

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

16356

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

16358

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

16359

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

16367

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c.

[NONE]