2.5.2 higher order Euler ode

Table 2.505: higher order Euler ode

#

ODE

CAS classification

Solved?

255

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

256

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

314

\[ {}a \,x^{3} y^{\prime \prime \prime }+b \,x^{2} y^{\prime \prime }+c x y^{\prime }+d y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

317

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

318

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

319

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

320

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

321

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

958

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

959

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

960

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

961

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

962

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

1467

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

2107

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2109

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2110

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2111

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2112

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]
i.c.

[[_3rd_order, _exact, _linear, _homogeneous]]

2222

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 2 x \]

[[_3rd_order, _with_linear_symmetries]]

2223

\[ {}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 y^{\prime } x +2 y = 30 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

2224

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2225

\[ {}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 y^{\prime } x +9 y = 96 x^{{5}/{2}} \]

[[_high_order, _with_linear_symmetries]]

2226

\[ {}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 y^{\prime } x +24 y = x^{4} \]

[[_high_order, _with_linear_symmetries]]

2227

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 12 x^{2} \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

2228

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 4 x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2229

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = x^{3} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2230

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 y^{\prime } x -16 y = 9 x^{4} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2231

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x +1\right ) x \]
i.c.

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2232

\[ {}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 9 x^{2} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2233

\[ {}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-y^{\prime } x +y = 6 x \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2234

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y = 40 x^{3} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

2236

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = F \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

2238

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = F \left (x \right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

3229

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

3233

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

3234

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 y^{\prime } x +10 y = \frac {4}{x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

3235

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 y^{\prime } x -6 y = \cos \left (\ln \left (x \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

3236

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

3709

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

3710

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

4165

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

4511

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \ln \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

4513

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

6696

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

6751

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _missing_y]]

6752

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

6899

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 12 x^{2} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

6932

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7488

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

[[_high_order, _with_linear_symmetries]]

7683

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

7703

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

8035

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

8036

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

8037

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8615

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8876

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8877

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

[[_3rd_order, _with_linear_symmetries]]

8878

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_high_order, _with_linear_symmetries]]

11494

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y \]

[[_3rd_order, _with_linear_symmetries]]

11512

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (x +8\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11515

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

11518

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 y^{\prime } x -y-2 x^{3} = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

11566

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0 \]

[[_high_order, _missing_y]]

11567

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }+a y = 0 \]

[[_high_order, _with_linear_symmetries]]

12948

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = x \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

12949

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

12957

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

12963

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

13257

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

13268

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13398

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13541

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13542

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

13543

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

13549

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

13663

\[ {}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

14344

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15403

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15404

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15405

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15406

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

15407

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 y^{\prime } x +16 y = 0 \]

[[_high_order, _with_linear_symmetries]]

15408

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

15409

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_high_order, _with_linear_symmetries]]

15410

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

15530

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

15531

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = {\mathrm e}^{-x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

15534

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 12 x \sin \left (x^{2}\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

16438

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16452

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 y^{\prime } x +140 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16453

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16454

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16455

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

16456

\[ {}x^{3} y^{\prime \prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16457

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

16458

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

16468

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 y^{\prime } x +16 y = \frac {1}{x^{3}} \]

[[_3rd_order, _with_linear_symmetries]]

16469

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 y^{\prime } x +80 y = \frac {1}{x^{13}} \]

[[_3rd_order, _with_linear_symmetries]]

16474

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16475

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16476

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16477

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 y^{\prime } x -17 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

16485

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

16486

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

16487

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16488

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x = -8 \]

[[_3rd_order, _missing_y]]

16500

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 y^{\prime } x +125 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

16501

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 y^{\prime } x +48 y = 0 \]

[[_high_order, _with_linear_symmetries]]

16502

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 y^{\prime } x +15 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

16503

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 y^{\prime } x +45 y = 0 \]

[[_high_order, _with_linear_symmetries]]

16504

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 y^{\prime } x +4 y = 0 \]

[[_high_order, _with_linear_symmetries]]

16505

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 y^{\prime } x +58 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

17813

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

17993

\[ {}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 y^{\prime } x -12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

17994

\[ {}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

17998

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18030

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3}+3 x \]

[[_3rd_order, _with_linear_symmetries]]

18376

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

18377

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

18378

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18590

\[ {}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 y^{\prime } x = 17 x^{6} \]

[[_high_order, _missing_y]]

18591

\[ {}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

18598

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18617

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18684

\[ {}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 y^{\prime } x = \ln \left (x \right )^{2} \]

[[_3rd_order, _missing_y]]

18686

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

18687

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

18688

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

18925

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

18926

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_high_order, _with_linear_symmetries]]

18933

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

18935

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18937

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

18938

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 c +\frac {10}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

18942

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

18943

\[ {}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

[[_3rd_order, _with_linear_symmetries]]

19317

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

19319

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = \ln \left (x \right )^{2} \]

[[_3rd_order, _with_linear_symmetries]]

19320

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

19322

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

19336

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 4 x \]

[[_high_order, _with_linear_symmetries]]

19337

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y = x^{2}+3 x -4 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

19339

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = x^{2}+\frac {1}{x^{2}} \]

[[_3rd_order, _reducible, _mu_y2]]

19340

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right ) \]

[[_high_order, _with_linear_symmetries]]

19343

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = x \ln \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

19344

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

19350

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y = x^{2}+3 x -4 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

19369

\[ {}x^{3} y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

19414

\[ {}n \,x^{3} y^{\prime \prime \prime } = y-y^{\prime } x \]

[[_3rd_order, _with_linear_symmetries]]

19442

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

19578

\[ {}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

[[_3rd_order, _with_linear_symmetries]]

19580

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{2}+3 x \]

[[_3rd_order, _with_linear_symmetries]]

19581

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

19582

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

19584

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]