2.6 Table of ODEs solved using Laplace transform method

Table 2.423: Differential equations solved using Laplace transform

#

ODE

CAS classification

Solved?

530

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

531

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

532

\[ {}x^{\prime \prime }-x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

533

\[ {}x^{\prime \prime }+8 x^{\prime }+15 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

534

\[ {}x^{\prime \prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

535

\[ {}x^{\prime \prime }+4 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

536

\[ {}x^{\prime \prime }+x = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

537

\[ {}x^{\prime \prime }+9 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

538

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

539

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

541

\[ {}x^{\prime \prime }+6 x^{\prime }+25 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

542

\[ {}x^{\prime \prime }-6 x^{\prime }+8 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

543

\[ {}x^{\prime \prime }-4 x = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

544

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

545

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

546

\[ {}x^{\prime \prime \prime \prime }-x = 0 \]
i.c.

[[_high_order, _missing_x]]

547

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]
i.c.

[[_high_order, _missing_x]]

548

\[ {}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0 \]
i.c.

[[_high_order, _missing_x]]

549

\[ {}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0 \]
i.c.

[[_high_order, _missing_x]]

550

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t} \]
i.c.

[[_high_order, _with_linear_symmetries]]

551

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

552

\[ {}x^{\prime \prime }+6 x^{\prime }+18 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

553

\[ {}x^{\prime \prime }+9 x = 6 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

554

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25} = 6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

555

\[ {}t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

556

\[ {}t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

557

\[ {}t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

558

\[ {}t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

559

\[ {}t x^{\prime \prime }-2 x^{\prime }+x t = 0 \]
i.c.

[_Lienard]

560

\[ {}t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

561

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

562

\[ {}x^{\prime \prime }+2 x^{\prime }+x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

563

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

564

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

565

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

566

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

567

\[ {}x^{\prime \prime }+2 x^{\prime }+x = t +\delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

568

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

569

\[ {}x^{\prime \prime }+9 x = \delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

570

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = \delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

571

\[ {}x^{\prime \prime }+2 x^{\prime }+x = \delta \left (t \right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

572

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

573

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

574

\[ {}x^{\prime \prime }+6 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

575

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1483

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1484

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1485

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1486

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1487

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

1490

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1491

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1492

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1493

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1494

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ -t +2 & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1495

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1496

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1497

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1498

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1499

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1500

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1501

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1502

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1503

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = k \left (\operatorname {Heaviside}\left (t -\frac {3}{2}\right )-\operatorname {Heaviside}\left (t -\frac {5}{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1504

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1505

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )-\operatorname {Heaviside}\left (t -5-k \right ) \left (t -5-k \right )}{k} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1506

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1507

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1508

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -5\right )+\operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1509

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1510

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1511

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1512

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1513

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1514

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1515

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1516

\[ {}y^{\prime \prime }+y = \frac {\operatorname {Heaviside}\left (t -4+k \right )-\operatorname {Heaviside}\left (t -4-k \right )}{2 k} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1518

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2671

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2672

\[ {}2 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2673

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2674

\[ {}y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2675

\[ {}y^{\prime \prime }+3 y^{\prime }+7 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2676

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2677

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

2678

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2679

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2680

\[ {}y^{\prime \prime }+y = t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2681

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2682

\[ {}y^{\prime \prime }-2 y^{\prime }+7 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2683

\[ {}y^{\prime \prime }+y^{\prime }+y = 1+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2684

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 2 & 0\le t \le 3 \\ 3 t -7 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2685

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \left (t -3\right ) \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2686

\[ {}y^{\prime \prime }+y^{\prime }+y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2687

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <4 \\ 0 & 4<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2688

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ \cos \left (t \right ) & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2689

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2690

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \left \{\begin {array}{cc} \sin \left (2 t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2691

\[ {}y^{\prime \prime }+y^{\prime }+7 y = \left \{\begin {array}{cc} t & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2692

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t^{2} & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2693

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2694

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2695

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2696

\[ {}y^{\prime \prime }+y^{\prime }+y = 2 \delta \left (t -1\right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2697

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}+3 \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3743

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]
i.c.

[[_linear, ‘class A‘]]

3744

\[ {}y^{\prime }+y = 8 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

3745

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

3746

\[ {}y^{\prime }+2 y = 4 t \]
i.c.

[[_linear, ‘class A‘]]

3747

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3748

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3749

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3750

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3751

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3752

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

3753

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

3754

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3755

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3756

\[ {}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _missing_y]]

3757

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3758

\[ {}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3759

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12-6 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3760

\[ {}y^{\prime \prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3761

\[ {}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3762

\[ {}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3763

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3764

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3765

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3766

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3767

\[ {}y^{\prime \prime }+4 y = 9 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3768

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3769

\[ {}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3770

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3771

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3772

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]
i.c.

[[_linear, ‘class A‘]]

3773

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_linear, ‘class A‘]]

3774

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3775

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3776

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3777

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]
i.c.

[[_linear, ‘class A‘]]

3778

\[ {}y^{\prime \prime }-y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3779

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3780

\[ {}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3781

\[ {}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (t -1\right ) \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3782

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3783

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{1-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3784

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3785

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3786

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3787

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3788

\[ {}y^{\prime }+y = \delta \left (t -5\right ) \]
i.c.

[[_linear, ‘class A‘]]

3789

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

3790

\[ {}y^{\prime }+4 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3791

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]
i.c.

[[_linear, ‘class A‘]]

3792

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3793

\[ {}y^{\prime \prime }-4 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3794

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3795

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3796

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3797

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3798

\[ {}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3799

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3800

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6104

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

6105

\[ {}y^{\prime }+2 y = 2 \]
i.c.

[_quadrature]

6106

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

6107

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6108

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6109

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6110

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6111

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6112

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6113

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6114

\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (x -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6115

\[ {}y^{\prime \prime \prime }-y = 5 \]
i.c.

[[_3rd_order, _missing_x]]

6116

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

6117

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x^{2} {\mathrm e}^{x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

6118

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6119

\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \left (t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6583

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

6584

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

6585

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6586

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6587

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6588

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6589

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6590

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6591

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6592

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6593

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6594

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6595

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

6596

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6597

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6598

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6599

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6600

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6601

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6602

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6603

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6604

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6605

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6606

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6607

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6608

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6609

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6610

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6611

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6612

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6613

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6614

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6615

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6616

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6617

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7403

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7404

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7405

\[ {}y^{\prime \prime }-y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7406

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7407

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7408

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7409

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

7410

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7411

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7412

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7413

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7414

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

[[_2nd_order, _missing_x]]

7415

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

[[_2nd_order, _with_linear_symmetries]]

7416

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7417

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7560

\[ {}y^{\prime }-y = 1 \]
i.c.

[_quadrature]

7561

\[ {}2 y^{\prime }+y = 0 \]
i.c.

[_quadrature]

7562

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

7563

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7564

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7565

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _missing_y]]

7566

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7567

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7568

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

7569

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

7570

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7571

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7572

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

7573

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

7574

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7575

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7576

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7577

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7578

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7579

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7580

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7581

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 1+t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7582

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7583

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7584

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

7585

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

7586

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

7587

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7588

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7589

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7590

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7591

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7592

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7593

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7594

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7595

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7596

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7597

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7600

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7601

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

7602

\[ {}y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

7603

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7604

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7605

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7606

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7607

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

7608

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _missing_y]]

7609

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7610

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7611

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7612

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7613

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7614

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8214

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12406

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

12407

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

12408

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12409

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12410

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12411

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12412

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12413

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12414

\[ {}x^{\prime \prime }-2 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

12415

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12416

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12417

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12418

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

12419

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12420

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12421

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12422

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

12423

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12424

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12425

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12426

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12427

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12428

\[ {}x^{\prime \prime }+4 x = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13181

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13182

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13183

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13184

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13185

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13186

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13187

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13188

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13189

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13190

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13191

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13192

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

13193

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13194

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13195

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13196

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13197

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13198

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13199

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13200

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13201

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13202

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13203

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13204

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13205

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13206

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]
i.c.

[[_high_order, _missing_x]]

13207

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13208

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13209

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13210

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13211

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13212

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13213

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13214

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13215

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

13216

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13217

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13218

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13219

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

13220

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13221

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13222

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]
i.c.

[[_linear, ‘class A‘]]

13223

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13224

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13225

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13226

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13227

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13228

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13229

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13230

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13231

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

13232

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13233

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13234

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13235

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13236

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13237

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13238

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13239

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13240

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13241

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13242

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]
i.c.

[[_3rd_order, _missing_x]]

13244

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13245

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

13246

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

13247

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13248

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

13683

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

13684

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

13685

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

13686

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13687

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13688

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13689

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

13690

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

13691

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

13692

\[ {}y^{\prime \prime }-9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13693

\[ {}y^{\prime \prime }+9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13694

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13695

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

13697

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

13698

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

13699

\[ {}y^{\prime \prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

13700

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13701

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13702

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13703

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13704

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

13705

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

13706

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13707

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

13708

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13709

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13710

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13711

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13712

\[ {}y^{\prime }+3 y = \delta \left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13713

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13714

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13715

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13716

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13717

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13718

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14121

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

14122

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14123

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14124

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14125

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14126

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14127

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14128

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14129

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14130

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14131

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14132

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14133

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14134

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14135

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14136

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14137

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14138

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14139

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14140

\[ {}y^{\prime \prime }+16 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14747

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

14748

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

14749

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

14750

\[ {}y^{\prime \prime }-4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14751

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14752

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14753

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14754

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14755

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14756

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]
i.c.

[[_2nd_order, _missing_x]]

14757

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14758

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14759

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

14760

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[_Lienard]

14761

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14762

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14763

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14764

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14765

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14766

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14767

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14768

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

14769

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14770

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14771

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14772

\[ {}y^{\prime \prime }+4 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

14773

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14774

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14775

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14776

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14777

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

14778

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14779

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14780

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14781

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14782

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

14783

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

14784

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

14785

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

14786

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14787

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

14788

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _quadrature]]

14789

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14790

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

14791

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]
i.c.

[_quadrature]

14792

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _quadrature]]

14793

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _quadrature]]

14794

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

14795

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14796

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14797

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

14798

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

[[_2nd_order, _missing_y]]

14799

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

14800

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14801

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14802

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14803

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14804

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14805

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14806

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14807

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

14808

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

16445

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

16446

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

16447

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16448

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

16449

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16450

\[ {}x^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

16451

\[ {}x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16452

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

16453

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16454

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16455

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16456

\[ {}x^{\prime \prime }+x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16457

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

16458

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

16459

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]
i.c.

[[_2nd_order, _missing_x]]

16460

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (1+t \right ) {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _missing_y]]

16461

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]