2.6 Table of ODEs solved using Series method

Table 2.513: Differential equations solved using series method

#

ODE

CAS classification

Solved?

400

\[ {}y^{\prime } = y \]

[_quadrature]

401

\[ {}y^{\prime } = 4 y \]

[_quadrature]

402

\[ {}2 y^{\prime }+3 y = 0 \]

[_quadrature]

403

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

404

\[ {}y^{\prime } = x y \]

[_separable]

405

\[ {}\left (x -2\right ) y^{\prime }+y = 0 \]

[_separable]

406

\[ {}\left (2 x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

407

\[ {}2 \left (x +1\right ) y^{\prime }+y = 0 \]

[_separable]

408

\[ {}\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

409

\[ {}2 \left (x -1\right ) y^{\prime } = 3 y \]

[_separable]

410

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

411

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

412

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

413

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

414

\[ {}y^{\prime } x +y = 0 \]

[_separable]

415

\[ {}2 y^{\prime } x = y \]

[_separable]

416

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

417

\[ {}x^{3} y^{\prime } = 2 y \]

[_separable]

418

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

419

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

420

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

421

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

422

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

423

\[ {}y^{\prime \prime } = y^{\prime }+y \]
i.c.

[[_2nd_order, _missing_x]]

424

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

426

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

427

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

428

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

429

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

430

\[ {}\left (x^{2}-3\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

431

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

432

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

433

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

434

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

435

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

436

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

437

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

438

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

439

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

440

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

441

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

442

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

443

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

444

\[ {}\left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

445

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

446

\[ {}\left (4 x^{2}+16 x +17\right ) y^{\prime \prime } = 8 y \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

447

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

448

\[ {}y^{\prime \prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

449

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

450

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

451

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

452

\[ {}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

453

\[ {}y^{\prime \prime }+{\mathrm e}^{-x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

454

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

455

\[ {}x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+x y = 0 \]

[_Lienard]

456

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

457

\[ {}x y^{\prime \prime }+\left (-x^{3}+x \right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

458

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

459

\[ {}x^{2} y^{\prime \prime }+y^{\prime } \cos \left (x \right )+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

460

\[ {}3 x^{3} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

461

\[ {}x \left (x +1\right ) y^{\prime \prime }+2 y^{\prime }+3 x y = 0 \]

[[_Emden, _Fowler]]

462

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

463

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } \sin \left (x \right )+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

464

\[ {}\left (2 x^{3}+6 x^{2}\right ) y^{\prime \prime }+21 y^{\prime } x +9 \left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

465

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

466

\[ {}\left (1-x \right )^{2} y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

467

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

468

\[ {}\left (x -2\right )^{3} y^{\prime \prime }+3 \left (x -2\right )^{2} y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

469

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x -2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

470

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x^{2}+9\right ) y^{\prime }+\left (x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

471

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

472

\[ {}x^{3} \left (1-x \right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

473

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

474

\[ {}2 x y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

475

\[ {}2 x y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

476

\[ {}3 x y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

477

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

478

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (-2 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

479

\[ {}6 x^{2} y^{\prime \prime }+7 y^{\prime } x -\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

480

\[ {}3 x^{2} y^{\prime \prime }+2 y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

481

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

482

\[ {}2 x y^{\prime \prime }+\left (-2 x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

483

\[ {}x y^{\prime \prime }+2 y^{\prime }+9 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

484

\[ {}x y^{\prime \prime }+2 y^{\prime }-4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

485

\[ {}4 x y^{\prime \prime }+8 y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

486

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

487

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

488

\[ {}2 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

489

\[ {}\left (5 x^{3}+2 x^{2}\right ) y^{\prime \prime }+\left (-x^{2}+3 x \right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

490

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

491

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

492

\[ {}x^{3} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

493

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

494

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

495

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

496

\[ {}x \left (x -1\right ) \left (x +1\right )^{2} y^{\prime \prime }+2 x \left (x -3\right ) \left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

497

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) x \right ) y^{\prime }-\alpha \beta y = 0 \]

[_Jacobi]

498

\[ {}x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

499

\[ {}x y^{\prime \prime }+\left (5-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

500

\[ {}x y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

501

\[ {}5 x y^{\prime \prime }+\left (30+3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

502

\[ {}x y^{\prime \prime }-\left (x +4\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

503

\[ {}2 x y^{\prime \prime }-\left (6+2 x \right ) y^{\prime }+y = 0 \]

[_Laguerre]

504

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

505

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

506

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

507

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

508

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

509

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

510

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}-3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

511

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

512

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

513

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1042

\[ {}y^{\prime } = y \]

[_quadrature]

1043

\[ {}y^{\prime } = 4 y \]

[_quadrature]

1044

\[ {}2 y^{\prime }+3 y = 0 \]

[_quadrature]

1045

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

1046

\[ {}y^{\prime } = x^{2} y \]

[_separable]

1047

\[ {}\left (x -2\right ) y^{\prime }+y = 0 \]

[_separable]

1048

\[ {}\left (2 x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

1049

\[ {}2 \left (x +1\right ) y^{\prime } = y \]

[_separable]

1050

\[ {}\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

1051

\[ {}2 \left (x -1\right ) y^{\prime } = 3 y \]

[_separable]

1052

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

1053

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

1054

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1055

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

1056

\[ {}y^{\prime } x +y = 0 \]

[_separable]

1057

\[ {}2 y^{\prime } x = y \]

[_separable]

1058

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1059

\[ {}x^{3} y^{\prime } = 2 y \]

[_separable]

1060

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1061

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1062

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1063

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1064

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1066

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1067

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1068

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1069

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1070

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

1071

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

1072

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1073

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1074

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

1075

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1076

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1077

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1078

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1079

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

1080

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

1081

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1082

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1083

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1084

\[ {}\left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1085

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1086

\[ {}\left (4 x^{2}+16 x +17\right ) y^{\prime \prime } = 8 y \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1087

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1088

\[ {}y^{\prime \prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1089

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1090

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1091

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1092

\[ {}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1093

\[ {}y^{\prime \prime }+{\mathrm e}^{-x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1094

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1095

\[ {}x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+x y = 0 \]

[_Lienard]

1096

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1097

\[ {}y^{\prime \prime } = x y \]

[[_Emden, _Fowler]]

1361

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1362

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1363

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

1364

\[ {}\left (1-x \right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1365

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1366

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1367

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1368

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1369

\[ {}\left (-x^{2}+3\right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1370

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1371

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1372

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1373

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1374

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1375

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1376

\[ {}y^{\prime \prime }-2 y^{\prime } x +\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1377

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1378

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1379

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1380

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1381

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

1382

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1383

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1384

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1385

\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1386

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+y \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1387

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1388

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1389

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1390

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1391

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1392

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1393

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1394

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1395

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1396

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

1397

\[ {}y^{\prime }-x y = 0 \]

[_separable]

1398

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

1399

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

1840

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1841

\[ {}\left (3 x^{2}+1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1842

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+\left (2-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1843

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1844

\[ {}\left (3 x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1845

\[ {}x y^{\prime \prime }+\left (4+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1846

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -3 x y = 0 \]

[[_Emden, _Fowler]]

1847

\[ {}\left (2-x \right ) y^{\prime \prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1848

\[ {}\left (x +1\right ) y^{\prime \prime }+2 \left (x -1\right )^{2} y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1849

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1850

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1851

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (-x^{2}-6 x +1\right ) y^{\prime }+\left (x^{2}+6 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1852

\[ {}x^{2} \left (1+3 x \right ) y^{\prime \prime }+x \left (x^{2}+12 x +2\right ) y^{\prime }+2 x \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1853

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1854

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1855

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1856

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1857

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1858

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0 \]

[_Gegenbauer]

1859

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1860

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x +\frac {y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1861

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

1862

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1863

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1864

\[ {}y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1865

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1866

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1867

\[ {}\left (8 x^{2}+1\right ) y^{\prime \prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1868

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1869

\[ {}y^{\prime \prime }-\left (x -3\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1870

\[ {}\left (2 x^{2}-4 x +1\right ) y^{\prime \prime }+10 \left (x -1\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1871

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1872

\[ {}\left (3 x^{2}+6 x +5\right ) y^{\prime \prime }+9 \left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1873

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }-y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1874

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1875

\[ {}\left (3 x^{2}-6 x +5\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1876

\[ {}\left (4 x^{2}-24 x +37\right ) y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

1877

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1878

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1879

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1880

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1881

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

1882

\[ {}\left (-2 x^{3}+1\right ) y^{\prime \prime }-10 x^{2} y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1883

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1884

\[ {}\left (-2 x^{3}+1\right ) y^{\prime \prime }+6 x^{2} y^{\prime }+24 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1885

\[ {}\left (-x^{3}+1\right ) y^{\prime \prime }+15 x^{2} y^{\prime }-36 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1886

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1887

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

1888

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1889

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1890

\[ {}\left (-x^{6}+1\right ) y^{\prime \prime }-12 x^{5} y^{\prime }-30 x^{4} y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1891

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1892

\[ {}\left (1+3 x \right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1893

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+8 x \right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1894

\[ {}\left (-2 x^{2}+1\right ) y^{\prime \prime }+\left (2-6 x \right ) y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1895

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1896

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1897

\[ {}\left (x^{2}+3 x +3\right ) y^{\prime \prime }+\left (6+4 x \right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1898

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1899

\[ {}\left (2 x^{2}-3 x +2\right ) y^{\prime \prime }-\left (4-6 x \right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1900

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1901

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (1-4 x \right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1902

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1903

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1904

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1905

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1906

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1907

\[ {}\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1908

\[ {}\left (2 x +1\right ) y^{\prime \prime }-\left (1-2 x \right ) y^{\prime }-\left (3-2 x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1909

\[ {}\left (5+2 x \right ) y^{\prime \prime }-y^{\prime }+\left (x +5\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1910

\[ {}\left (x +4\right ) y^{\prime \prime }-\left (4+2 x \right ) y^{\prime }+\left (6+x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1911

\[ {}\left (3 x +2\right ) y^{\prime \prime }-y^{\prime } x +2 x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1912

\[ {}\left (2 x +3\right ) y^{\prime \prime }+3 y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1913

\[ {}\left (2 x +3\right ) y^{\prime \prime }-3 y^{\prime }-\left (x +2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1914

\[ {}\left (10-2 x \right ) y^{\prime \prime }+\left (x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1915

\[ {}\left (7+x \right ) y^{\prime \prime }+\left (8+2 x \right ) y^{\prime }+\left (x +5\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1916

\[ {}\left (6+4 x \right ) y^{\prime \prime }+\left (2 x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1917

\[ {}\left (\beta \,x^{2}+\alpha x +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1918

\[ {}\left (2 x^{2}+3 x +1\right ) y^{\prime \prime }+\left (6+8 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1919

\[ {}\left (6 x^{2}-5 x +1\right ) y^{\prime \prime }-\left (10-24 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1920

\[ {}\left (4 x^{2}-4 x +1\right ) y^{\prime \prime }-\left (8-16 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1921

\[ {}\left (x^{2}+4 x +4\right ) y^{\prime \prime }+\left (8+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1922

\[ {}\left (3 x^{2}+8 x +4\right ) y^{\prime \prime }+\left (16+12 x \right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1923

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (2 x^{2}+3\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1924

\[ {}y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1925

\[ {}y^{\prime \prime }+5 y^{\prime } x -\left (-x^{2}+3\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1926

\[ {}y^{\prime \prime }-2 y^{\prime } x -\left (3 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1927

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1928

\[ {}2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1929

\[ {}3 y^{\prime \prime }+2 y^{\prime } x +\left (-x^{2}+4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1930

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1931

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1932

\[ {}\left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1933

\[ {}y^{\prime \prime }+\left (x^{2}+2 x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1934

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1935

\[ {}\left (x +1\right ) y^{\prime \prime }+\left (2 x^{2}-3 x +1\right ) y^{\prime }-\left (x -4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1936

\[ {}y^{\prime \prime }+\left (3 x^{2}+12 x +13\right ) y^{\prime }+\left (5+2 x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1937

\[ {}\left (3 x^{2}+2 x +1\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1938

\[ {}\left (x^{2}+4 x +3\right ) y^{\prime \prime }-\left (-x^{2}+4 x +5\right ) y^{\prime }-\left (x +2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1939

\[ {}\left (x^{2}+2 x +1\right ) y^{\prime \prime }+\left (1-x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1940

\[ {}\left (-2 x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+3 x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1941

\[ {}\left (2 x^{2}-11 x +16\right ) y^{\prime \prime }+\left (x^{2}-6 x +10\right ) y^{\prime }-\left (2-x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1942

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1943

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1944

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (2+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1945

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1946

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1947

\[ {}x^{2} \left (x^{2}+3 x +3\right ) y^{\prime \prime }+x \left (7 x^{2}+8 x +5\right ) y^{\prime }-\left (-9 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1948

\[ {}4 x^{2} y^{\prime \prime }+x \left (4 x^{2}+2 x +7\right ) y^{\prime }-\left (-7 x^{2}-4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1949

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1950

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1951

\[ {}8 x^{2} y^{\prime \prime }-2 x \left (-x^{2}-4 x +3\right ) y^{\prime }+\left (x^{2}+6 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1952

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1953

\[ {}x \left (x^{2}+x +3\right ) y^{\prime \prime }+\left (-x^{2}+x +4\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1954

\[ {}10 x^{2} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+x \left (66 x^{2}+13 x +13\right ) y^{\prime }-\left (10 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1955

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1956

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (5+4 x \right ) y^{\prime }-\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1957

\[ {}2 x^{2} y^{\prime \prime }+x \left (x +5\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1958

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1959

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1960

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x -\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1961

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1962

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1963

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1964

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1965

\[ {}x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (5+18 x \right ) y^{\prime }-\left (1-12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1966

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1967

\[ {}x^{2} \left (x +8\right ) y^{\prime \prime }+x \left (3 x +2\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1968

\[ {}x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1969

\[ {}2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1970

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1971

\[ {}x^{2} \left (6+x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1972

\[ {}8 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1973

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1974

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1975

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1976

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1977

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1978

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1979

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1980

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1981

\[ {}3 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+5 x \left (x^{2}+1\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1982

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1983

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1984

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1985

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1986

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1987

\[ {}x^{2} \left (x^{2}+8\right ) y^{\prime \prime }+7 x \left (x^{2}+2\right ) y^{\prime }-\left (-9 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1988

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1989

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1990

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1991

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1992

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1993

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1994

\[ {}9 x^{2} \left (x +5\right ) y^{\prime \prime }+9 x \left (5+9 x \right ) y^{\prime }-\left (5-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1995

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1996

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1997

\[ {}3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1998

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1999

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2000

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2001

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2002

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2003

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2004

\[ {}x^{2} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+x \left (7 x^{2}+6 x +3\right ) y^{\prime }+\left (-3 x^{2}+6 x +1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2005

\[ {}x^{2} \left (x^{2}+2 x +1\right ) y^{\prime \prime }+x \left (4 x^{2}+3 x +1\right ) y^{\prime }-x \left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2006

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2007

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2008

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2009

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+x +1\right ) y^{\prime }+x \left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2010

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2011

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (x^{2}+x +4\right ) y^{\prime }+\left (3 x^{2}+5 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2012

\[ {}16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2013

\[ {}9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2014

\[ {}4 x^{2} y^{\prime \prime }+\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2015

\[ {}36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2016

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2017

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2018

\[ {}25 x^{2} y^{\prime \prime }+x \left (15+x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2019

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2020

\[ {}x^{2} \left (4 x +9\right ) y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2021

\[ {}x^{2} y^{\prime \prime }-x \left (3-2 x \right ) y^{\prime }+\left (4+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2022

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+3 x \left (1-6 x \right ) y^{\prime }+\left (1-12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2023

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3+5 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2024

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2025

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (4+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2026

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (4 x +9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2027

\[ {}x^{2} \left (1+4 x \right ) y^{\prime \prime }-x \left (1-4 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2028

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2029

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2030

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2031

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2032

\[ {}4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2033

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2034

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2035

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2036

\[ {}4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2037

\[ {}3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2038

\[ {}4 x^{2} \left (4 x^{2}+1\right ) y^{\prime \prime }+32 x^{3} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2039

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2040

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (7 x^{2}+3\right ) y^{\prime }+\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2041

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }+\left (12 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2042

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2043

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-9 x^{2}+5\right ) y^{\prime }+\left (-3 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2044

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (-x^{2}+14\right ) y^{\prime }+2 \left (x^{2}+9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2045

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (7 x^{2}+3\right ) y^{\prime }+\left (8 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2046

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }+3 y^{\prime } x +\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2047

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2048

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2049

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x^{2} y^{\prime }+\left (1-5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2050

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2051

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2052

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2053

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2054

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2055

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2056

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2057

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2058

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2059

\[ {}x^{2} \left (4+3 x \right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2060

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2061

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2062

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2063

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2064

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2065

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2066

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2067

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2068

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

2069

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2070

\[ {}x \left (x +1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2071

\[ {}2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2072

\[ {}x^{2} y^{\prime \prime }+x \left (x +2\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2073

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (9-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2074

\[ {}x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (14+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2075

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2076

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2077

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2078

\[ {}x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2079

\[ {}x \left (x +1\right ) y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2080

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2081

\[ {}4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2082

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2083

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2084

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2085

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2086

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2087

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2088

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-x \left (9+8 x \right ) y^{\prime }-12 x y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2089

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2090

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2091

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

2092

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2093

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2094

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (x^{2}+8\right ) y^{\prime }+\left (3 x^{2}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2095

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2096

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2097

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2098

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (2 x^{2}+11\right ) y^{\prime }+\left (10 x^{2}+13\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2099

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2100

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2101

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2102

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2103

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2104

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2105

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }-x \left (x^{2}+3\right ) y^{\prime }-2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2106

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2413

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2414

\[ {}y^{\prime \prime }-t y = 0 \]

[[_Emden, _Fowler]]

2415

\[ {}\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2416

\[ {}y^{\prime \prime }-t^{3} y = 0 \]

[[_Emden, _Fowler]]

2417

\[ {}t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2418

\[ {}y^{\prime \prime }+t^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

2419

\[ {}y^{\prime \prime }-t^{3} y = 0 \]
i.c.

[[_Emden, _Fowler]]

2420

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2421

\[ {}y^{\prime \prime }-2 t y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2422

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

2423

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2424

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2425

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2426

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2427

\[ {}y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2428

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2429

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2430

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2441

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2442

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2443

\[ {}\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2444

\[ {}\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2445

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (1+t \right )}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2446

\[ {}t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2447

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2448

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

2449

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2450

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2451

\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

2452

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2453

\[ {}t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2454

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2455

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

2456

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2457

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2458

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

2459

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2460

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2461

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2462

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2463

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \]

[_Lienard]

2464

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

[_Bessel]

2465

\[ {}t y^{\prime \prime }+\left (-t +1\right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

2466

\[ {}2 \sin \left (t \right ) y^{\prime \prime }+\left (-t +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2467

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2468

\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

2469

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2470

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \]

[_Bessel]

2471

\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

2611

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2612

\[ {}y^{\prime \prime }-t y = 0 \]

[[_Emden, _Fowler]]

2613

\[ {}\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2614

\[ {}y^{\prime \prime }-t^{3} y = 0 \]

[[_Emden, _Fowler]]

2615

\[ {}t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2616

\[ {}y^{\prime \prime }+t^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

2617

\[ {}y^{\prime \prime }-t^{3} y = 0 \]
i.c.

[[_Emden, _Fowler]]

2618

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2619

\[ {}y^{\prime \prime }-2 t y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2620

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

2621

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2622

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2623

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2624

\[ {}y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2625

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2626

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2627

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2638

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2639

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2640

\[ {}\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2641

\[ {}\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2642

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (1+t \right )}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2643

\[ {}t^{3} y^{\prime \prime }+\sin \left (t^{2}\right ) y^{\prime }+t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2644

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2645

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

2646

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2647

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2648

\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

2649

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2650

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2651

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2652

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

2653

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2654

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2655

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

2656

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2657

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2658

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2659

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2660

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \]

[_Lienard]

2661

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

[_Bessel]

2662

\[ {}t y^{\prime \prime }+\left (-t +1\right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

2663

\[ {}t \left (-t +1\right ) y^{\prime \prime }+\left (\gamma -\left (1+\alpha +\beta \right ) t \right ) y^{\prime }-\alpha \beta y = 0 \]

[_Jacobi]

2664

\[ {}2 \sin \left (t \right ) y^{\prime \prime }+\left (-t +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2665

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2666

\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

2667

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2668

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \]

[_Bessel]

2669

\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

2670

\[ {}t^{2} y^{\prime \prime }+t p \left (t \right ) y^{\prime }+q \left (t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3335

\[ {}y^{\prime } = \sqrt {1-y} \]
i.c.

[_quadrature]

3336

\[ {}y^{\prime } = x y-x^{2} \]
i.c.

[_linear]

3337

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

3338

\[ {}y^{\prime } = 3 x +\frac {y}{x} \]
i.c.

[_linear]

3339

\[ {}y^{\prime } = \ln \left (x y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

3340

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

3341

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

3342

\[ {}y^{\prime } = \sqrt {1+x y} \]
i.c.

[‘y=_G(x,y’)‘]

3343

\[ {}y^{\prime } = \cos \left (x \right )+\sin \left (y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

3344

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3345

\[ {}y^{\prime \prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3346

\[ {}y^{\prime \prime }+2 y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3347

\[ {}y^{\prime \prime } = \sin \left (y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3348

\[ {}y^{\prime \prime }+\frac {{y^{\prime }}^{2}}{2}-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3349

\[ {}y^{\prime \prime } = \sin \left (x y\right ) \]
i.c.

[NONE]

3350

\[ {}y^{\prime \prime } = \cos \left (x y\right ) \]
i.c.

[NONE]

3351

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3352

\[ {}3 x \left (3 x +2\right ) y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3353

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+7 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3354

\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3355

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3356

\[ {}9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3357

\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3358

\[ {}2 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3359

\[ {}3 x^{2} y^{\prime \prime }+\left (-x^{2}+5 x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3360

\[ {}4 x^{2} y^{\prime \prime }+x \left (x^{2}-4\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3361

\[ {}4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3362

\[ {}9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3363

\[ {}4 x^{2} \left (1-x \right ) y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3364

\[ {}2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3365

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3366

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3367

\[ {}\left (8-x \right ) x^{2} y^{\prime \prime }+6 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3368

\[ {}2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3369

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3370

\[ {}3 x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3371

\[ {}x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3372

\[ {}2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3373

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

3374

\[ {}x y^{\prime \prime }+y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3375

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3376

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3377

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3378

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3379

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3380

\[ {}x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3381

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3382

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3383

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3384

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3385

\[ {}x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3386

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3387

\[ {}x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3388

\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \]

[[_2nd_order, _with_linear_symmetries]]

3389

\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \]

[[_2nd_order, _with_linear_symmetries]]

3390

\[ {}x y^{\prime \prime }+y^{\prime }-2 x y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3391

\[ {}x y^{\prime \prime }-y^{\prime } x +y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3392

\[ {}\left (1-2 x \right ) y^{\prime \prime }+4 y^{\prime } x -4 y = x^{2}-x \]

[[_2nd_order, _with_linear_symmetries]]

3393

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +12\right ) y = x^{2}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

3394

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y = -2 x^{2}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

3395

\[ {}3 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = -x^{3}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

3396

\[ {}9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y = x^{4}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3397

\[ {}9 x^{2} y^{\prime \prime }+10 y^{\prime } x +y = x -1 \]

[[_2nd_order, _with_linear_symmetries]]

3398

\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = x^{3}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3399

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 6 \left (-x^{2}+1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3400

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+2 y = x^{2} \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3401

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = x \left (x^{2}+x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3402

\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y = x^{2} \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3501

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

[_Gegenbauer]

3502

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3503

\[ {}z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3504

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3505

\[ {}z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (1+z \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3506

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

3507

\[ {}y^{\prime \prime }-2 z y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3508

\[ {}z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

[_Jacobi]

3509

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3510

\[ {}\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3511

\[ {}\left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

3512

\[ {}y^{\prime \prime }+\frac {y}{z^{3}} = 0 \]

[[_Emden, _Fowler]]

3513

\[ {}z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

3514

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3986

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

3987

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

3988

\[ {}y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3989

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3990

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

3991

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3992

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3993

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3994

\[ {}\left (x^{2}-3\right ) y^{\prime \prime }-3 y^{\prime } x -5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3995

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3996

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

3997

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

3998

\[ {}y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3999

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4000

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4001

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4002

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4003

\[ {}4 y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[_Lienard]

4004

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+x y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4005

\[ {}y^{\prime \prime }+y^{\prime } x -4 y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4006

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1-x}+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4007

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4008

\[ {}\left (x -2\right )^{2} y^{\prime \prime }+\left (x -2\right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4009

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4010

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-7 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4011

\[ {}4 x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

4012

\[ {}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4013

\[ {}x^{2} y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+5 \,{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4014

\[ {}4 x^{2} y^{\prime \prime }+3 y^{\prime } x +x y = 0 \]

[[_Emden, _Fowler]]

4015

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4016

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4017

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4018

\[ {}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4019

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4020

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4021

\[ {}3 x^{2} y^{\prime \prime }+x \left (7+3 x \right ) y^{\prime }+\left (1+6 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4022

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4023

\[ {}3 x^{2} y^{\prime \prime }+x \left (3 x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4024

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4025

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4026

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4027

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4028

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4029

\[ {}x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4030

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4031

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{5}+9 x \right ) y^{\prime }+\left (10 x^{4}+5 x^{2}+25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4032

\[ {}x^{2} y^{\prime \prime }+\left (4 x +\frac {1}{2} x^{2}-\frac {1}{3} x^{3}\right ) y^{\prime }-\frac {7 y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4033

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4034

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4035

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4036

\[ {}x^{2} y^{\prime \prime }+x \cos \left (x \right ) y^{\prime }-2 y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4037

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4038

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4039

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4040

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4041

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+7 x \,{\mathrm e}^{x} y^{\prime }+9 \left (1+\tan \left (x \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4042

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4043

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4044

\[ {}x y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

4045

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4046

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4047

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4048

\[ {}x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

4049

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4050

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4051

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4052

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4053

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4054

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4055

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4056

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4057

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4058

\[ {}4 x^{2} y^{\prime \prime }-\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4059

\[ {}x y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4060

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4061

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4062

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

[_Lienard]

4063

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

4064

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

4065

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4066

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

4067

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

4068

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4069

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

4070

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4071

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4072

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

4073

\[ {}x^{2} y^{\prime \prime }+\frac {3 y^{\prime } x}{2}-\frac {\left (x +1\right ) y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4074

\[ {}x^{2} y^{\prime \prime }-x \left (2-x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4075

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4076

\[ {}y^{\prime \prime }+\left (1-\frac {3}{4 x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4178

\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

[[_Emden, _Fowler]]

4179

\[ {}y^{\prime \prime }-\frac {\left (-3 x^{2}+x \right ) y^{\prime }}{2 x^{3}+2 x^{2}}+\frac {y}{2 x^{3}+2 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4180

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4181

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

4182

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (\frac {1}{4 x^{2}}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4183

\[ {}y^{\prime \prime }-\frac {\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right )}{x \left (-x^{2}+2\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4184

\[ {}y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )} = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4185

\[ {}y^{\prime \prime }+\frac {\left (1-x \right ) y^{\prime }}{2 x}-\frac {y}{4 x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{2 x}+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

4187

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1+\frac {1}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4188

\[ {}y^{\prime \prime }+\frac {\left (1-5 x \right ) y^{\prime }}{-x^{2}+x}-\frac {4 y}{-x^{2}+x} = 0 \]

[_Jacobi]

4189

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{\left (x +1\right ) x}-\frac {y}{\left (x +1\right ) x} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4588

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

4589

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4590

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

4591

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[_Gegenbauer]

4592

\[ {}y^{\prime \prime }-2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

4593

\[ {}y^{\prime \prime }-2 x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4594

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (4 x -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4595

\[ {}y^{\prime \prime }+\left (\cos \left (x \right )+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4596

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4597

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4598

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

[_Laguerre]

4599

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{2}+x \right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4600

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4601

\[ {}x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4602

\[ {}x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4603

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4604

\[ {}x y^{\prime \prime }-2 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4605

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4606

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+2 \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4607

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6040

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6041

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

6042

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6043

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6044

\[ {}y^{\prime \prime }+a \,x^{2} y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6045

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6046

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6047

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6048

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6049

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6050

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6051

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (-n +1\right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (-n +1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6052

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6053

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+y^{\prime } x -n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6054

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6055

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

6056

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6057

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6058

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6059

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6060

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6061

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]

[[_elliptic, _class_I]]

6062

\[ {}y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

[[_Emden, _Fowler]]

6063

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6064

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

[[_elliptic, _class_II]]

6065

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

[_Jacobi]

6066

\[ {}x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6067

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6068

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6069

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

6070

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6071

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

6072

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

6073

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6074

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6236

\[ {}y^{\prime } x = x y+y \]

[_separable]

6238

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

6240

\[ {}y^{\prime } x = y \]

[_separable]

6242

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

6244

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

6246

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

6250

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6252

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6254

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6345

\[ {}\left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6346

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6347

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6348

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

[[_Emden, _Fowler]]

6349

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (1+t \right ) x^{\prime }-\left (t -2\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6350

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6351

\[ {}\sin \left (x \right ) y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6352

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6353

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6354

\[ {}y^{\prime }+\left (x +2\right ) y = 0 \]

[_separable]

6355

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

6356

\[ {}z^{\prime }-x^{2} z = 0 \]

[_separable]

6357

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6358

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6359

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6360

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

[_Lienard]

6361

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6362

\[ {}\left (x +1\right ) y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6363

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

6364

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

6365

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6366

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

6367

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-y^{\prime } x +2 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6368

\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \]

[_separable]

6369

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

6370

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6371

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

6372

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6373

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6374

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]
i.c.

[_separable]

6375

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]
i.c.

[_separable]

6376

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6377

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6378

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+\cos \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6379

\[ {}y^{\prime }-x y = \sin \left (x \right ) \]

[_linear]

6380

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

[_linear]

6381

\[ {}z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6382

\[ {}y^{\prime \prime }-2 y^{\prime } x +3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6383

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = \cos \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6384

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6385

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6386

\[ {}y^{\prime \prime }-\sin \left (x \right ) y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

6559

\[ {}\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6560

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6561

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

6562

\[ {}y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6563

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6564

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6565

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

6566

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6567

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

6568

\[ {}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6792

\[ {}\left (1-x \right ) y^{\prime } = x^{2}-y \]

[_linear]

6793

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

6795

\[ {}y^{\prime } = 2 x^{2}+3 y \]

[[_linear, ‘class A‘]]

6796

\[ {}\left (x +1\right ) y^{\prime } = x^{2}-2 x +y \]

[_linear]

6797

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

6798

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

6799

\[ {}y^{\prime \prime }-y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6800

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

6801

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6802

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6803

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6804

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6805

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

6806

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6807

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

6808

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

6809

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6810

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

6811

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

6812

\[ {}x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6813

\[ {}z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6814

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6815

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6816

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6817

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

6818

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (4-x \right ) x y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6819

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6820

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6821

\[ {}x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6822

\[ {}x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6823

\[ {}\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

6824

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6825

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6826

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]
i.c.

[_Gegenbauer]

6827

\[ {}y^{\prime \prime } = \left (x -1\right ) y \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6828

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6829

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6830

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6831

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6832

\[ {}2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6833

\[ {}\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6834

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

6835

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6836

\[ {}x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6837

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6838

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6839

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6840

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6841

\[ {}y^{\prime }+x y = \cos \left (x \right ) \]

[_linear]

6843

\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6844

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6845

\[ {}y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

6846

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6847

\[ {}y^{\prime \prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

6848

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

6849

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

6850

\[ {}y^{\prime }-x y = 0 \]

[_separable]

6851

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6852

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6853

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6854

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6855

\[ {}y^{\prime \prime }+2 x^{3} y = 0 \]

[[_Emden, _Fowler]]

6856

\[ {}y^{\prime \prime }-x y = \frac {1}{1-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6857

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

6858

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6859

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

6860

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-x y = 0 \]

[[_Emden, _Fowler]]

6861

\[ {}2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

6862

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

6863

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6864

\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6865

\[ {}x y^{\prime \prime }+x^{3} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6866

\[ {}x y^{\prime \prime }+y^{\prime } x -y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6867

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _missing_x]]

6868

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6869

\[ {}x^{3} y^{\prime \prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6870

\[ {}x y^{\prime \prime }+x^{5} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6871

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6872

\[ {}\cos \left (x \right ) y^{\prime \prime }-\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6873

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

6874

\[ {}x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6875

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

7201

\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7202

\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7203

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7204

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7205

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

7206

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

7207

\[ {}y^{\prime \prime }-2 y^{\prime } x +y = 0 \]

[_Lienard]

7208

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

7209

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7210

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7211

\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7212

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7213

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

7215

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7216

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7217

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7218

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7219

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7220

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

7221

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7222

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7223

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7224

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

7225

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7226

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7227

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7228

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7229

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7230

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7231

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7232

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7233

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7234

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7235

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7236

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7237

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

7238

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

7239

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7240

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

[[_Emden, _Fowler]]

7241

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7242

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7243

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7244

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

7245

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7246

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7247

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7248

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7249

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7250

\[ {}x y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7251

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7252

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7253

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

7254

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7255

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7256

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

7257

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

7258

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7259

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7260

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

7261

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7262

\[ {}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7263

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

7264

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

7265

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7266

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7267

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7268

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7269

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

7270

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

7271

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

[_Lienard]

7272

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

7273

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7274

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7275

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

7276

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7277

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

7278

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

7279

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7280

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7281

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7282

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{4}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7283

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7284

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7285

\[ {}\left (x -1\right ) y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

7286

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7287

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

7288

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7289

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7290

\[ {}\left (x +2\right ) y^{\prime \prime }+3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

7291

\[ {}\left (x +1\right ) y^{\prime } = y \]

[_separable]

7292

\[ {}y^{\prime } = -2 x y \]

[_separable]

7293

\[ {}y^{\prime } x -3 y = k \]

[_separable]

7294

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7295

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7296

\[ {}y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7297

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

7298

\[ {}y^{\prime \prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7299

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7300

\[ {}y^{\prime }+4 y = 1 \]
i.c.

[_quadrature]

7301

\[ {}y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7302

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]
i.c.

[_Gegenbauer]

7303

\[ {}\left (x -2\right ) y^{\prime } = x y \]
i.c.

[_separable]

7304

\[ {}\left (x -2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7305

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

7306

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

7307

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7308

\[ {}x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7309

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7310

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

7311

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

7312

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7313

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7314

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7315

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7316

\[ {}2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7317

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

7318

\[ {}4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

7319

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7320

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7321

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7322

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{49}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7323

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

7324

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7325

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7327

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7328

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-6\right ) y = 0 \]

[_Bessel]

7329

\[ {}x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[_Lienard]

7330

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7331

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

7332

\[ {}4 x y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

7333

\[ {}x y^{\prime \prime }+y^{\prime }+36 y = 0 \]

[[_Emden, _Fowler]]

7334

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

7335

\[ {}y^{\prime \prime }+k^{2} x^{4} y = 0 \]

[[_Emden, _Fowler]]

7336

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

7337

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7338

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7339

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7340

\[ {}16 \left (x +1\right )^{2} y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

7341

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

7342

\[ {}x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7343

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

7344

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

7345

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

7346

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7687

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

7688

\[ {}y^{\prime \prime }+3 x^{2} y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7689

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

7690

\[ {}y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7691

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7692

\[ {}y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-\left (x -1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7693

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

7694

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{x} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7696

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

7708

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7709

\[ {}3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7710

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7711

\[ {}x y^{\prime \prime }+4 y = 0 \]

[[_Emden, _Fowler]]

7712

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

7713

\[ {}\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7714

\[ {}x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7715

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7716

\[ {}4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7717

\[ {}x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7718

\[ {}3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 x y = 0 \]

[[_Emden, _Fowler]]

7719

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

7720

\[ {}x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

7721

\[ {}2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7722

\[ {}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 \cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7723

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7724

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7725

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7726

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7727

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7728

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

7729

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7730

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

8072

\[ {}y^{\prime } = 2 x y \]

[_separable]

8074

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

8076

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

8078

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

8080

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

8082

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

8084

\[ {}y^{\prime } x = y \]

[_separable]

8086

\[ {}x^{2} y^{\prime } = y \]

[_separable]

8088

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

8091

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]

[_quadrature]

8092

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8093

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

8095

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8096

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8097

\[ {}y^{\prime \prime }+2 y^{\prime } x -y = x \]

[[_2nd_order, _with_linear_symmetries]]

8098

\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8099

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8100

\[ {}y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8101

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8102

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8103

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8104

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8105

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8106

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

8107

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8108

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 p y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8109

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8110

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8111

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8112

\[ {}\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8113

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8114

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8115

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8116

\[ {}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8117

\[ {}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8118

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8119

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8120

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x y = 0 \]

[[_Emden, _Fowler]]

8121

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

[[_Emden, _Fowler]]

8122

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

8123

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8124

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8125

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8126

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

8127

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8128

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8129

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8130

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

8132

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8133

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8134

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8135

\[ {}3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8136

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

8137

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

8139

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8140

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8141

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8142

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8143

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8144

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8145

\[ {}y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

8146

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8147

\[ {}2 y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8148

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8149

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8150

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8151

\[ {}\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8152

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8153

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8154

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

[_Lienard]

8155

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8156

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8157

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

8158

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8159

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8160

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8161

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8162

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8163

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

8164

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

8165

\[ {}9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8166

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

8212

\[ {}y^{\prime } = -x +y^{2} \]
i.c.

[[_Riccati, _special]]

8214

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

8216

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]
i.c.

[‘y=_G(x,y’)‘]

8218

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8220

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

8222

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8224

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8226

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

8227

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

8228

\[ {}y^{\prime \prime }-2 y^{\prime } x +y = 0 \]

[_Lienard]

8229

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

8230

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8231

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8232

\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8233

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8234

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8235

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

8236

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8237

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8238

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8239

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

8240

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8241

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8242

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8243

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8244

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8245

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8246

\[ {}y^{\prime \prime }-x y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8247

\[ {}y^{\prime \prime }-4 y^{\prime } x -4 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

8248

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8249

\[ {}y^{\prime \prime }+5 y^{\prime } x +\sqrt {x}\, y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8250

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8251

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8252

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

8253

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8254

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8255

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8256

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8257

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8258

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8259

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8260

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8261

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8262

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8263

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8264

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8265

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

8266

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

8267

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8268

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

[[_Emden, _Fowler]]

8269

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8270

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8271

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8272

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

8273

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8274

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8275

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8276

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8277

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8278

\[ {}x y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8279

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8280

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8281

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

8282

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8283

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8284

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8285

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

8286

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8311

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8312

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8313

\[ {}\left (x -1\right ) y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

8314

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8315

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

8316

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8317

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8318

\[ {}\left (x +2\right ) y^{\prime \prime }+3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

8319

\[ {}\left (1-2 \sin \left (x \right )\right ) y^{\prime \prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8320

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

8321

\[ {}x y^{\prime \prime }+\left (1-\cos \left (x \right )\right ) y^{\prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

8322

\[ {}\left ({\mathrm e}^{x}-1-x \right ) y^{\prime \prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8323

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 10 x^{3}-2 x +5 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

8557

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8558

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

8559

\[ {}y^{\prime \prime }+3 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8560

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8561

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8562

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8563

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8564

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8565

\[ {}\left (x^{2}-9\right ) y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8566

\[ {}y^{\prime \prime }+2 y^{\prime } x +5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8567

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8568

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8569

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

8570

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

8571

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8573

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8574

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8575

\[ {}y^{\prime \prime }+3 y^{\prime } x +7 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8576

\[ {}2 y^{\prime \prime }+9 y^{\prime } x -36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8577

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8578

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+3 y^{\prime } x -8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8579

\[ {}\left (9 x^{2}+1\right ) y^{\prime \prime }-18 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8580

\[ {}\left (3 x^{2}+1\right ) y^{\prime \prime }+13 y^{\prime } x +7 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8581

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+11 y^{\prime } x +9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8582

\[ {}y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8583

\[ {}y^{\prime \prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8584

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8585

\[ {}2 x \left (x +1\right ) y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8586

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8587

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8588

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

8589

\[ {}2 x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (1+7 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8590

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8591

\[ {}8 x^{2} y^{\prime \prime }+10 y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8592

\[ {}2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8593

\[ {}2 x \left (x +3\right ) y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8594

\[ {}2 x y^{\prime \prime }+\left (-2 x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8595

\[ {}x \left (4-x \right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8596

\[ {}3 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8597

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8598

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8599

\[ {}2 x^{2} y^{\prime \prime }-3 x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8600

\[ {}2 x^{2} y^{\prime \prime }+x \left (4 x -1\right ) y^{\prime }+2 \left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8601

\[ {}2 x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8602

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

8603

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8604

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

8605

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8616

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8617

\[ {}4 x^{2} y^{\prime \prime }+\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8618

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8619

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8620

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8621

\[ {}x^{2} y^{\prime \prime }-x \left (1+3 x \right ) y^{\prime }+\left (1-6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8622

\[ {}x^{2} y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8623

\[ {}\left (x -2\right ) x y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8624

\[ {}\left (x -2\right ) x y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8625

\[ {}4 \left (x -4\right )^{2} y^{\prime \prime }+\left (x -4\right ) \left (x -8\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8627

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8628

\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8629

\[ {}x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }+\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8630

\[ {}4 x^{2} y^{\prime \prime }+8 x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8631

\[ {}x^{2} y^{\prime \prime }+3 x \left (x +1\right ) y^{\prime }+\left (1-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8632

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8633

\[ {}x^{2} y^{\prime \prime }+2 x \left (x -2\right ) y^{\prime }+2 \left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8634

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+2 x \left (1+6 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8635

\[ {}x^{2} y^{\prime \prime }+x \left (3 x +2\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8636

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

8637

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8638

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8639

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8640

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8641

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8642

\[ {}x y^{\prime \prime }+\left (4+3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8643

\[ {}x y^{\prime \prime }-2 \left (x +2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8644

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8645

\[ {}x \left (x +3\right ) y^{\prime \prime }-9 y^{\prime }-6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8646

\[ {}x \left (1-2 x \right ) y^{\prime \prime }-2 \left (x +2\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8647

\[ {}x y^{\prime \prime }+\left (x^{3}-1\right ) y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8648

\[ {}x^{2} \left (4 x -1\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8649

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

8650

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8651

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

8652

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (2-x \right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8653

\[ {}x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8654

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8655

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

8656

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

8658

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

8659

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8660

\[ {}x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-5 y = 0 \]

[_Laguerre]

8661

\[ {}9 x^{2} y^{\prime \prime }-15 y^{\prime } x +7 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8662

\[ {}x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8663

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{3}+x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8664

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[_Jacobi]

8665

\[ {}x y^{\prime \prime }+y^{\prime }+x \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8666

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (6 x^{2}-3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8667

\[ {}x y^{\prime \prime }+y^{\prime } x +\left (x^{4}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8668

\[ {}x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8669

\[ {}x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8670

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8671

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8672

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }-2 y = 0 \]

[_Laguerre]

8673

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8674

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +7\right ) y^{\prime }+2 \left (x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8675

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8676

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x -18 y = 0 \]

[_Gegenbauer]

8677

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8678

\[ {}y^{\prime \prime }+2 y^{\prime } x -8 y = 0 \]

[_erf]

8679

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }-\left (x^{2}+7\right ) y^{\prime }+4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8680

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8681

\[ {}4 x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8682

\[ {}x^{2} y^{\prime \prime }-x \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8683

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8684

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8685

\[ {}4 x^{2} y^{\prime \prime }-x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8686

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8687

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8688

\[ {}4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8689

\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8690

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8691

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+5 \left (-x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8692

\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8693

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+4\right ) y = 0 \]

[[_Bessel, _modified]]

8694

\[ {}x \left (1-2 x \right ) y^{\prime \prime }-2 \left (x +2\right ) y^{\prime }+18 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8695

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8696

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8890

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8891

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8892

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8893

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8894

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8895

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8896

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8897

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8898

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8899

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8900

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8901

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right )+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8902

\[ {}x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8903

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8904

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8905

\[ {}\left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8906

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]
i.c.

[_Lienard]

8907

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -x y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

8908

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8909

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8910

\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8911

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8912

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8913

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8914

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8915

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8916

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8917

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8918

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8919

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8920

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8923

\[ {}x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

8924

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

8925

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8926

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

8927

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8928

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8929

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8930

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8931

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8932

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8933

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8934

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = \cos \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8935

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = x^{3}+x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8936

\[ {}\cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8937

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8938

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -x y = 0 \]

[[_Emden, _Fowler]]

8939

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8940

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8941

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8942

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8943

\[ {}x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

8944

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8945

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8946

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8947

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

8948

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

8949

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

8950

\[ {}x^{2} y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

8951

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8958

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8968

\[ {}y^{\prime }+y = \frac {1}{x} \]

[[_linear, ‘class A‘]]

8969

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

[[_linear, ‘class A‘]]

8970

\[ {}y^{\prime } x +y = 0 \]

[_separable]

8971

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

8972

\[ {}y^{\prime \prime } = \frac {1}{x} \]

[[_2nd_order, _quadrature]]

8973

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

[[_2nd_order, _missing_y]]

8974

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8975

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8979

\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9166

\[ {}x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9167

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

13560

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13561

\[ {}y^{\prime \prime }+8 y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13562

\[ {}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13563

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13564

\[ {}y^{\prime \prime }+y^{\prime } x +\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13565

\[ {}y^{\prime \prime }-y^{\prime } x +\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13566

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13567

\[ {}\left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13568

\[ {}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13569

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13570

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13571

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13572

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13573

\[ {}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13574

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13575

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

13576

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13577

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

13578

\[ {}\left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13579

\[ {}\left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13580

\[ {}\left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13581

\[ {}\left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13582

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13583

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13584

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13585

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13586

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13587

\[ {}2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13588

\[ {}3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13589

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

13590

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13591

\[ {}x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13592

\[ {}x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]

[_Lienard]

13593

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13594

\[ {}\left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13595

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {3 y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13596

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13597

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13598

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13599

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13600

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

13601

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

13602

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13603

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13807

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

13808

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

13809

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

13810

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13811

\[ {}y^{\prime \prime }-2 y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13812

\[ {}y^{\prime \prime }-2 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13813

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13814

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13815

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

13816

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

13914

\[ {}y^{\prime \prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

14138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

[_Jacobi]

14139

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14140

\[ {}x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14141

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }-k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14142

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

14143

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14144

\[ {}2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14145

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15647

\[ {}y^{\prime }-2 y = 0 \]

[_quadrature]

15648

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

15649

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

[_separable]

15650

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

[_separable]

15651

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

[_separable]

15652

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

15653

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

15654

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

[_separable]

15655

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

[_separable]

15656

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

15657

\[ {}\left (x +1\right ) y^{\prime }-x y = 0 \]

[_separable]

15658

\[ {}\left (x +1\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

15659

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15660

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15661

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15662

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

[[_Emden, _Fowler]]

15663

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15664

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15665

\[ {}y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15666

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15667

\[ {}y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15668

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15669

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15670

\[ {}y^{\prime \prime }-y^{\prime } x -2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15671

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\lambda y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15672

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda y = 0 \]

[_Gegenbauer]

15673

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

15674

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

15675

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15676

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15677

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15678

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right )-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15679

\[ {}y^{\prime \prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

15680

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

[_quadrature]

15681

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

15682

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

15683

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15684

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15685

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15686

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\frac {2 y}{x^{2}+4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15687

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15688

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15689

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15690

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15691

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

15692

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[_separable]

15693

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

15694

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

15695

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15696

\[ {}y^{\prime \prime }+3 y^{\prime } x -y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15697

\[ {}x y^{\prime \prime }-3 y^{\prime } x +\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15698

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

[_Titchmarsh]

15699

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15700

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15701

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

15702

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

[_separable]

15703

\[ {}\cos \left (x \right ) y^{\prime }+y = 0 \]

[_separable]

15704

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

[_separable]

15705

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15706

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15707

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15708

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15709

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15710

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15711

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15712

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

15713

\[ {}3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15714

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15715

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15716

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

15717

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15718

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15719

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15720

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15721

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15722

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15723

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15724

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15725

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15726

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15727

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {y}{1-x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15728

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

15729

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

[_Bessel]

15730

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15731

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15732

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15733

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

[_Laguerre]

15734

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15735

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15736

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15737

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15738

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15739

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15740

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15741

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15742

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15743

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

15744

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15745

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15746

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15747

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15748

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15749

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15750

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15751

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15752

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15753

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15754

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

15755

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

[_Laguerre]

15756

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16507

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

16508

\[ {}\left (x -2\right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16509

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16510

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

[[_2nd_order, _missing_x]]

16511

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

[[_2nd_order, _missing_x]]

16512

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16513

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

16514

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16515

\[ {}\left (3 x +2\right ) y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

16516

\[ {}\left (1+3 x \right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16517

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16518

\[ {}y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Hermite]

16519

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16520

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16521

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

16522

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y = 0 \]
i.c.

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16523

\[ {}y^{\prime \prime }+y^{\prime } x = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

16524

\[ {}y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16525

\[ {}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x], _Van_der_Pol]

16526

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16527

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16528

\[ {}y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16529

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16530

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16531

\[ {}y^{\prime \prime }-\cos \left (x \right ) y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16532

\[ {}x^{2} y^{\prime \prime }+6 y = 0 \]

[[_Emden, _Fowler]]

16533

\[ {}x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16534

\[ {}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16535

\[ {}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16536

\[ {}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

16537

\[ {}5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16538

\[ {}9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16539

\[ {}7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16540

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16541

\[ {}x y^{\prime \prime }+2 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16542

\[ {}y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16543

\[ {}y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16544

\[ {}y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16545

\[ {}y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16546

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x -7 y = 0 \]

[[_Emden, _Fowler]]

16547

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16548

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16549

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

16550

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-k^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

16551

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +k \left (k +1\right ) y = 0 \]

[_Gegenbauer]

16552

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16553

\[ {}x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16554

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

16555

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

[_Laguerre]

16556

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16557

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (16 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16614

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

16615

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16616

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16617

\[ {}3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

16618

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16619

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16620

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

[_Jacobi]

16621

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17198

\[ {}y^{\prime } = 1-x y \]
i.c.

[_linear]

17199

\[ {}y^{\prime } = \frac {y-x}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17200

\[ {}y^{\prime } = \sin \left (x \right ) y \]
i.c.

[_separable]

17201

\[ {}y^{\prime \prime }+x y = 0 \]
i.c.

[[_Emden, _Fowler]]

17202

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _missing_y]]

17203

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17204

\[ {}\ln \left (x \right ) y^{\prime \prime }-\sin \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17205

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c.

[NONE]

17206

\[ {}y^{\prime }-2 x y = 0 \]
i.c.

[_separable]

17207

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17208

\[ {}y^{\prime \prime }-y^{\prime } x +y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17209

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17210

\[ {}y^{\prime \prime } = x^{2} y-y^{\prime } \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17211

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17212

\[ {}y^{\prime } = {\mathrm e}^{y}+x y \]
i.c.

[‘y=_G(x,y’)‘]

17213

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17214

\[ {}\left (x +1\right ) y^{\prime }-n y = 0 \]

[_separable]

17215

\[ {}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[_Jacobi]

18407

\[ {}y^{\prime } = 2 x y \]

[_separable]

18408

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

18409

\[ {}y^{\prime } x = y \]

[_separable]

18410

\[ {}x^{2} y^{\prime } = y \]

[_separable]

18411

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

18412

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

18413

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18415

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18416

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18417

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

18418

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18419

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18420

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18421

\[ {}x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18422

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18423

\[ {}\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18424

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18425

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18426

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18427

\[ {}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18428

\[ {}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18429

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18430

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18431

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18432

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18433

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18434

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18435

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

18436

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18437

\[ {}y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18438

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18439

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18440

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

18441

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18442

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18443

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

18444

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18445

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

18446

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18447

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18448

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18449

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18450

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

18451

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

18976

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18977

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18978

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18979

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18980

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18981

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]