2.2.106 Problems 10501 to 10600

Table 2.213: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10501

(ab)y2y22bxyyabbx2+ay2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.772

10502

(ay2+bx+c)y2byy+dy2=0

[‘y=_G(x,y’)‘]

88.562

10503

(aybx)2(a2y2+b2)c2(ay+b)2=0

[[_homogeneous, ‘class C‘], _dAlembert]

16.930

10504

(b2y+a2x+c2)2y2+(a1x+b1y+c1)y+b0y+a0+c0=0

[_rational]

474.263

10505

xy2y2(y3+x3a)y+x2y=0

[_rational]

20.366

10506

xy2y22y3y+2xy2x3=0

[_separable]

1.157

10507

x2(xy21)y2+2x2y2(yx)yy2(x2y1)=0

[‘y=_G(x,y’)‘]

50.547

10508

(y4a2x2)y2+2a2xyy+y2(y2a2)=0

[‘y=_G(x,y’)‘]

40.982

10509

(y4+x2y2x2)y2+2xyyy2=0

[‘y=_G(x,y’)‘]

12.897

10510

9y4(x21)y26xy5y4x2=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.497

10511

x2(x2y41)y2+2x3y3(y2x2)yy2(x4y21)=0

[‘y=_G(x,y’)‘]

158.652

10512

(a2x2+y2x2)y2+2xyy+a2x2+y2y2=0

[[_1st_order, _with_linear_symmetries]]

157.535

10513

(a(x2+y2)3/2x2)y2+2xyy+a(x2+y2)3/2y2=0

[[_1st_order, _with_linear_symmetries]]

52.798

10514

sin(y)y2+2xycos(y)3sin(y)cos(y)4=0

[‘y=_G(x,y’)‘]

157.863

10515

y2(acos(y)+b)ccos(y)+d=0

[_quadrature]

10.715

10516

f(x2+y2)(1+y2)(yxy)2=0

[[_1st_order, _with_linear_symmetries]]

11.676

10517

(x2+y2)f(xx2+y2)(1+y2)(yxy)2=0

[[_homogeneous, ‘class A‘]]

9.041

10518

(x2+y2)f(yx2+y2)(1+y2)(yxy)2=0

[[_homogeneous, ‘class A‘]]

8.937

10519

y3(ya)2(yb)2=0

[_quadrature]

11.747

10520

y3f(x)(ay2+by+c)2=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.928

10521

y3+yy=0

[_quadrature]

0.737

10522

y3+yxy=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.522

10523

y3(5+x)y+y=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.511

10524

y3axy+x3=0

[_quadrature]

0.831

10525

y32yy+y2=0

[_quadrature]

108.913

10526

y2axyy+2ay2=0

[_separable]

0.722

10527

y3(x2+xy+y2)y2+(xy3+x2y2+x3y)yx3y3=0

[_quadrature]

0.580

10528

y3xy4yy5=0

[[_1st_order, _with_linear_symmetries]]

13.240

10529

y3+ay2+by+abx=0

[[_homogeneous, ‘class C‘], _dAlembert]

1.014

10530

y3+xy2y=0

[_dAlembert]

2.886

10531

y3yy2+y2=0

[_quadrature]

143.529

10532

y2(x2+xy2+y4)y2+(xy6+x2y4+x3y2)yx3y6=0

[‘y=_G(x,y’)‘]

42.242

10533

ay3+by2+cyyd=0

[_quadrature]

0.835

10534

xy3yy2+a=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.845

10535

4xy36yy2x+3y=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.964

10536

8xy312yy2+9y=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.973

10537

(a2+x2)y3+bx(a2+x2)y2+y+bx=0

[_quadrature]

0.556

10538

x3y33x2yy2+(3xy2+x6)yy32x5y=0

[[_1st_order, _with_linear_symmetries]]

12.395

10539

2(yx+y)3yy=0

[[_homogeneous, ‘class G‘]]

14.836

10540

y3sin(x)(ysin(x)cos(x)2)y2(cos(x)2y+sin(x))y+ysin(x)=0

[_quadrature]

0.602

10541

2yy3yy2+2yxx=0

[_quadrature]

1.307

10542

y2y3+2yxy=0

[[_1st_order, _with_linear_symmetries]]

111.208

10543

16y2y3+2yxy=0

[[_1st_order, _with_linear_symmetries]]

111.191

10544

xy2y3y3y2+x(x2+1)yx2y=0

[‘y=_G(x,y’)‘]

245.856

10545

x7y2y3(3x6y31)y2+3x5y4yx4y5=0

[[_homogeneous, ‘class G‘]]

125.545

10546

y4(ya)3(yb)2=0

[_quadrature]

2.445

10547

y4+3(x1)y23(2y1)y+3x=0

[_dAlembert]

36.556

10548

y44y(yx2y)2=0

[[_homogeneous, ‘class G‘]]

0.794

10549

y6(ya)4(yb)3=0

[_quadrature]

5.210

10550

x2(1+y2)3a2=0

[_quadrature]

4.455

10551

yraysbxrsrs=0

[[_homogeneous, ‘class G‘]]

11.948

10552

ynf(x)n(ya)n+1(yb)n1=0

[_separable]

51.067

10553

ynf(x)g(y)=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.045

10554

aym+byny=0

[_quadrature]

2.396

10555

xn1ynnxy+y=0

[‘y=_G(x,y’)‘]

2.250

10556

1+y2+yxy=0

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.103

10557

1+y2+xy2+y=0

[_dAlembert]

78.454

10558

x(1+y2+y)y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

40.293

10559

ax1+y2+yxy=0

[[_homogeneous, ‘class A‘], _dAlembert]

77.234

10560

y1+y2ayyax=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17.049

10561

ay1+y22xyy+y2x2=0

[_rational]

40.054

10562

f(x2+y2)1+y2yx+y=0

[[_1st_order, _with_linear_symmetries]]

14.132

10563

a(1+y3)1/3+bxyy=0

[_dAlembert]

90.707

10564

ln(y)+yx+ay+b=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.571

10565

ln(y)+a(yxy)=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.756

10566

yln(y)+yyln(y)xy=0

[_separable]

5.833

10567

sin(y)+yx=0

[_quadrature]

0.764

10568

acos(y)+by+x=0

[_quadrature]

0.619

10569

y2sin(y)y=0

[_quadrature]

1.724

10570

(1+y2)sin(yxy)21=0

[_Clairaut]

8.652

10571

(1+y2)(arctan(y)+ax)+y=0

[_quadrature]

1.220

10572

axnf(y)+yxy=0

[‘y=_G(x,y’)‘]

1.418

10573

f(xy2)+2yxy=0

[‘y=_G(x,y’)‘]

0.587

10574

f(x3y22)+y3y=0

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.071

10575

y=F(yx+a)

[[_homogeneous, ‘class C‘], _dAlembert]

1.145

10576

y=2x+F(yx2)

[[_1st_order, _with_linear_symmetries]]

0.973

10577

y=ax2+F(y+ax24+bx2)

[[_1st_order, _with_linear_symmetries]]

1.166

10578

y=F(yebx)ebx

[[_1st_order, _with_linear_symmetries]]

1.253

10579

y=1+2F(4x2y+14x2)x2x3

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.771

10580

y=1+F(yax+1ax)ax2ax2

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.826

10581

y=(ax22F(y+ax48))x2

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.815

10582

y=2ay+2F(y24ax)a

[[_1st_order, _with_linear_symmetries]]

1.255

10583

y=F(ln(ln(y))ln(x))y

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.898

10584

y=F(yx2+1)xx2+1

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.948

10585

y=(x3/2+2F(yx36))x2

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.211

10586

y=x+F((xy)(x+y))y

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.583

10587

y=F(1+yln(x)y)y2x

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.925

10588

y=xy+F(x2+y2)

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.690

10589

y=F(ay2+bx2a)xay

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.617

10590

y=6x3+5x+5F(y2x352x)5x

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.758

10591

y=F(y3/23ex2)exy

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.508

10592

y=F(y2+bx2)xy

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.643

10593

y=F(xy2+1x)yx2

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.696

10594

y=2x2+x+F(y+x2x)x

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.776

10595

y=2ax2(y+2F(xy24ax)a)

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.028

10596

y=y+F(yx)x1

[[_homogeneous, ‘class D‘]]

2.373

10597

y=x+F(x2+y2)y

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.783

10598

y=F(2yln(x)1y)y2x

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.938

10599

y=F((xy)(x+y))xy

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.471

10600

y=y2(2+F(x2yyx2)x2)x3

[NONE]

3.112