| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime }&=5 x+y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.673 |
|
| \begin{align*}
x^{\prime }&=4 x+5 y \\
y^{\prime }&=-2 x+6 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.751 |
|
| \begin{align*}
x^{\prime }&=4 x-5 y \\
y^{\prime }&=5 x-4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.593 |
|
| \begin{align*}
x^{\prime }&=x-8 y \\
y^{\prime }&=x-3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.680 |
|
| \begin{align*}
x^{\prime }&=z \\
y^{\prime }&=-z \\
z^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.714 |
|
| \begin{align*}
x^{\prime }&=2 x+y+2 z \\
y^{\prime }&=3 x+6 z \\
z^{\prime }&=-4 x-3 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| \begin{align*}
x^{\prime }&=x-12 y-14 z \\
y^{\prime }&=x+2 y-3 z \\
z^{\prime }&=x+y-2 z \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 6 \\
z \left (0\right ) &= -7 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| \begin{align*}
x^{\prime }&=2 x+3 y-7 \\
y^{\prime }&=-x-2 y+5 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.825 |
|
| \begin{align*}
x^{\prime }&=5 x+9 y+2 \\
y^{\prime }&=-x+11 y+6 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.704 |
|
| \begin{align*}
-y^{2}+x^{2} {y^{\prime }}^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x +6 y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{2} x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| \begin{align*}
y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.225 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
22.566 |
|
| \begin{align*}
\left (x -y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.783 |
|
| \begin{align*}
x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2}&=4 y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.344 |
|
| \begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+y \left (-x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.935 |
|
| \begin{align*}
x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right )&=y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.161 |
|
| \begin{align*}
x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.100 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.504 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.347 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.822 |
|
| \begin{align*}
4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
1.165 |
|
| \begin{align*}
4 y^{3} {y^{\prime }}^{2}+4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
1.783 |
|
| \begin{align*}
{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.970 |
|
| \begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.049 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| \begin{align*}
2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.620 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y&=y^{\prime } x +k {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+2 y y^{\prime } x^{3}-4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.097 |
|
| \begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.355 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.044 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.415 |
|
| \begin{align*}
y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.448 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.765 |
|
| \begin{align*}
y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
0.789 |
|
| \begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.563 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.455 |
|
| \begin{align*}
2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
0.898 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.963 |
|
| \begin{align*}
{y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
1.602 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y y^{\prime }+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.403 |
|
| \begin{align*}
{y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.863 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.165 |
|
| \begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.010 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.168 |
|
| \begin{align*}
{y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.140 |
|
| \begin{align*}
y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.066 |
|
| \begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
22.158 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.412 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.301 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.046 |
|
| \begin{align*}
y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
1.382 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.294 |
|
| \begin{align*}
2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
23.613 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.821 |
|
| \begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.877 |
|
| \begin{align*}
-{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
5.477 |
|
| \begin{align*}
y^{\prime \prime }+\beta ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.483 |
|
| \begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
1.768 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
8.696 |
|
| \begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{2} \\
y \left (2\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
2.273 |
|
| \begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
y^{\prime \prime }&=-{\mathrm e}^{-2 y} \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| \begin{align*}
y^{\prime \prime }&=-{\mathrm e}^{-2 y} \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.659 |
|
| \begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✗ |
✗ |
86.895 |
|
| \begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= -\frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✗ |
✗ |
93.095 |
|
| \begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
7.794 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
2.096 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.298 |
|
| \begin{align*}
2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
14.720 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
2.873 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
186.178 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
136.540 |
|
| \begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
5.119 |
|
| \begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
53.083 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
5.285 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=y^{\prime } \left (2 x -y^{\prime }\right ) \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.662 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.271 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
3.258 |
|
| \begin{align*}
x^{4} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }+x^{3}\right ) \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.171 |
|
| \begin{align*}
y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
796.102 |
|
| \begin{align*}
{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2}&=0 \\
y \left (0\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✗ |
✗ |
1324.965 |
|
| \begin{align*}
y^{\prime }-y^{\prime \prime } x +{y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1147.645 |
|
| \begin{align*}
{y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+y^{\prime \prime } x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✗ |
✗ |
746.209 |
|