# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.576 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.958 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
0.301 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.335 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.472 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.481 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.270 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.007 |
|
\[
{}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.235 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.421 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-x^{2} \ln \left (x \right ) = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.501 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.839 |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x -\left (2 x^{3}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.991 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.128 |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.530 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.815 |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.105 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.488 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.875 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.195 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.048 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.334 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x +3\right ) x y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.478 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.167 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.518 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (2+3 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.162 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.116 |
|
\[
{}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.530 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.040 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.236 |
|
\[
{}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.042 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.151 |
|
\[
{}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.205 |
|
\[
{}x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.340 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
2.072 |
|
\[
{}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.465 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}+2\right ) x y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.219 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.265 |
|
\[
{}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.225 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.519 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.620 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+\left (-1\right )^{n} a -a^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.854 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.686 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{\operatorname {a1}}+b \right ) x y^{\prime }+\left (A \,x^{2 \operatorname {a1}}+B \,x^{\operatorname {a1}}+C \,x^{\operatorname {b1}}+\operatorname {DD} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.731 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (x \tan \left (x \right )+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.438 |
|
\[
{}x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.487 |
|
\[
{}x^{2} y^{\prime \prime }+2 x f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right ) x +f \left (x \right )^{2}-f \left (x \right )+a \,x^{2}+b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.695 |
|
\[
{}x^{2} y^{\prime \prime }+2 x^{2} f \left (x \right ) y^{\prime }+\left (x^{2} \left (f^{\prime }\left (x \right )+f \left (x \right )^{2}+a \right )-v \left (v -1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.793 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x -2 x^{2} f \left (x \right )\right ) y^{\prime }+\left (x^{2} \left (1+f \left (x \right )^{2}-f^{\prime }\left (x \right )\right )-f \left (x \right ) x -v^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.780 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.399 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.424 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.954 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.398 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.738 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.256 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.943 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.440 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.539 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y = 0
\] |
[_Gegenbauer] |
✗ |
0.363 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {d}{d x}\operatorname {LegendreP}\left (n , x\right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.468 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.266 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.174 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.415 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.962 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.897 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -l y = 0
\] |
[_Gegenbauer] |
✗ |
0.645 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v +1\right ) y = 0
\] |
[_Gegenbauer] |
✗ |
0.703 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x -\left (v +2\right ) \left (v -1\right ) y = 0
\] |
[_Gegenbauer] |
✗ |
585.694 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-\left (3 x +1\right ) y^{\prime }-\left (x^{2}-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.277 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.520 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (v +n +1\right ) \left (v -n \right ) y = 0
\] |
[_Gegenbauer] |
✗ |
1.076 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (v -n +1\right ) \left (v +n \right ) y = 0
\] |
[_Gegenbauer] |
✗ |
1.104 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.612 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 a x y^{\prime }+a \left (a -1\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
2.607 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.037 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.068 |
|
\[
{}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.103 |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.099 |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.039 |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (2+3 x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.251 |
|
\[
{}\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.407 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.277 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y = 0
\] |
[_Jacobi] |
✗ |
0.684 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.245 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0
\] |
[_Jacobi] |
✗ |
1.141 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime }-l y = 0
\] |
[_Jacobi] |
✗ |
1.168 |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.346 |
|
\[
{}x \left (x +2\right ) y^{\prime \prime }+2 \left (n +1+\left (n +1-2 l \right ) x -l \,x^{2}\right ) y^{\prime }+\left (2 l \left (p -n -1\right ) x +2 p l +m \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.279 |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.527 |
|
\[
{}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.963 |
|
\[
{}\left (x^{2}+3 x +4\right ) y^{\prime \prime }+\left (x^{2}+x +1\right ) y^{\prime }-\left (2 x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.590 |
|
\[
{}\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
259.604 |
|
\[
{}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.018 |
|
\[
{}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.807 |
|
\[
{}2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y = 0
\] |
[_Jacobi] |
✗ |
0.513 |
|
\[
{}2 x \left (x -1\right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y = 0
\] |
[_Jacobi] |
✗ |
0.876 |
|
\[
{}\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.160 |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.633 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (4 a^{2} x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.856 |
|
\[
{}4 x^{2} y^{\prime \prime }-\left (-4 k x +4 m^{2}+x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.495 |
|