2.2.105 Problems 10401 to 10500

Table 2.211: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10401

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

44.839

10402

\[ {}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0 \]

[_quadrature]

1.090

10403

\[ {}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0 \]

[_dAlembert]

1.175

10404

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

0.867

10405

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.466

10406

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

1.132

10407

\[ {}{y^{\prime }}^{2}+2 f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

20.208

10408

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

2.814

10409

\[ {}{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.715

10410

\[ {}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.609

10411

\[ {}2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.410

10412

\[ {}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0 \]

[[_homogeneous, ‘class G‘]]

2.685

10413

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.376

10414

\[ {}3 {y^{\prime }}^{2}+4 y^{\prime } x -y+x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.525

10415

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

0.616

10416

\[ {}a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y = 0 \]

[[_homogeneous, ‘class G‘]]

3.507

10417

\[ {}a {y^{\prime }}^{2}+y y^{\prime }-x = 0 \]

[_dAlembert]

648.351

10418

\[ {}a {y^{\prime }}^{2}-y y^{\prime }-x = 0 \]

[_dAlembert]

336.165

10419

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.375

10420

\[ {}x {y^{\prime }}^{2}-2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.849

10421

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

0.906

10422

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

1.109

10423

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.810

10424

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

0.495

10425

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.682

10426

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

3.602

10427

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

14.937

10428

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.742

10429

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.376

10430

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.687

10431

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.596

10432

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.509

10433

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.349

10434

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.509

10435

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.666

10436

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.020

10437

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.580

10438

\[ {}\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.547

10439

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.604

10440

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.686

10441

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.757

10442

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

[_rational, _dAlembert]

2.057

10443

\[ {}x^{2} {y^{\prime }}^{2}-y^{4}+y^{2} = 0 \]

[_separable]

2.247

10444

\[ {}\left (y^{\prime } x +a \right )^{2}-2 a y+x^{2} = 0 \]

[_rational]

82.237

10445

\[ {}\left (y^{\prime } x +y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.425

10446

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

0.746

10447

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y \left (1+y\right )-x = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.508

10448

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} \left (-x^{2}+1\right )-x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.868

10449

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+a \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.678

10450

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

4.242

10451

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+3 y^{2} = 0 \]

[_separable]

0.480

10452

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

3.693

10453

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0 \]

[_separable]

0.740

10454

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

3.000

10455

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.944

10456

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

1.015

10457

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.579

10458

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.302

10459

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.017

10460

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

2.077

10461

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

27.875

10462

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.002

10463

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

[‘y=_G(x,y’)‘]

71.741

10464

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

73.536

10465

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.201

10466

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘]]

5.545

10467

\[ {}x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.365

10468

\[ {}x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.039

10469

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.567

10470

\[ {}{\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.526

10471

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

[‘y=_G(x,y’)‘]

26.383

10472

\[ {}\operatorname {d0} \left (x \right ) {y^{\prime }}^{2}+2 \operatorname {b0} \left (x \right ) y y^{\prime }+\operatorname {c0} \left (x \right ) y^{2}+2 \operatorname {d0} \left (x \right ) y^{\prime }+2 \operatorname {e0} \left (x \right ) y+\operatorname {f0} \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

265.559

10473

\[ {}y {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.634

10474

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.349

10475

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.913

10476

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.117

10477

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.806

10478

\[ {}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.534

10479

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.704

10480

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.722

10481

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.145

10482

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

4.195

10483

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.895

10484

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.940

10485

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.813

10486

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.824

10487

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.178

10488

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.962

10489

\[ {}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

0.977

10490

\[ {}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0 \]

[_rational, _dAlembert]

1178.766

10491

\[ {}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

[_rational]

3.477

10492

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5.449

10493

\[ {}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \]

[_rational]

21.610

10494

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.096

10495

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

72.764

10496

\[ {}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

264.797

10497

\[ {}y^{2} {y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

4.886

10498

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.210

10499

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+y^{2}-4 a x +4 a^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

76.389

10500

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a y^{2}+b x +c = 0 \]

[_rational]

9.196