| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }+\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.214 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+8 x \left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 x \left (x +1\right ) y^{\prime }+\left (1-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 x \left (x -2\right ) y^{\prime }+2 \left (2-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.224 |
|
| \begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }+2 x \left (1+6 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.290 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (3 x +2\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.204 |
|
| \begin{align*}
y^{\prime \prime } x -\left (x +3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
1.381 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.488 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.525 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.231 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.342 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.495 |
|
| \begin{align*}
y^{\prime \prime } x +\left (3 x +4\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.365 |
|
| \begin{align*}
y^{\prime \prime } x -2 \left (2+x \right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.444 |
|
| \begin{align*}
y^{\prime \prime } x +\left (2 x +3\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.405 |
|
| \begin{align*}
x \left (x +3\right ) y^{\prime \prime }-9 y^{\prime }-6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.386 |
|
| \begin{align*}
x \left (1-2 x \right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+8 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| \begin{align*}
y^{\prime \prime } x +\left (x^{3}-1\right ) y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.373 |
|
| \begin{align*}
x^{2} \left (4 x -1\right ) y^{\prime \prime }+x \left (5 x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.375 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
4.741 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
14.788 |
|
| \begin{align*}
2 y^{\prime \prime } x +6 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
5.210 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+2 x \left (-x +2\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
15.070 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
14.875 |
|
| \begin{align*}
y^{\prime \prime } x +\left (2 x +3\right ) y^{\prime }+8 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
15.068 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
15.089 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
15.050 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
24.329 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
14.598 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+5 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
14.740 |
|
| \begin{align*}
y^{\prime \prime } x +\left (-x +3\right ) y^{\prime }-5 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
15.124 |
|
| \begin{align*}
9 x^{2} y^{\prime \prime }-15 y^{\prime } x +7 \left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
16.290 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
15.023 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{3}+x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.290 |
|
| \begin{align*}
2 \left (1-x \right ) x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
1.558 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+\left (x +1\right ) x y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.161 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (6 x^{2}-3 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.300 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime } x +\left (x^{4}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
15.434 |
|
| \begin{align*}
x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.339 |
|
| \begin{align*}
x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=2\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.066 |
|
| \begin{align*}
2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.466 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
15.063 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
15.121 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.223 |
|
| \begin{align*}
2 \left (x +5\right ) y-x \left (7+2 x \right ) y^{\prime }+2 x^{2} y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.229 |
|
| \begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x -18 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.834 |
|
| \begin{align*}
2 y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| \begin{align*}
-8 y+2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_erf] |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| \begin{align*}
4 y x -\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.254 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (4 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.329 |
|
| \begin{align*}
\left (x +3\right ) y-2 x \left (2+x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.256 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-x \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.075 |
|
| \begin{align*}
2 y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.346 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (x^{2}-3\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.018 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }-x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
-2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.254 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.131 |
|
| \begin{align*}
y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.114 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.236 |
|
| \begin{align*}
x \left (-x^{2}+1\right ) y^{\prime \prime }+5 \left (-x^{2}+1\right ) y^{\prime }-4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.151 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (2 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Bessel, _modified]] |
✓ |
✓ |
✓ |
✓ |
14.640 |
|
| \begin{align*}
x \left (1-2 x \right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+18 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.474 |
|
| \begin{align*}
y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.346 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.028 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.773 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
14.396 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=5 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
14.619 |
|
| \begin{align*}
t x^{\prime }+2 x&=4 \,{\mathrm e}^{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.688 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +4 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
32.103 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=6 y^{2} x^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
27.179 |
|
| \begin{align*}
y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
0.311 |
|
| \begin{align*}
y x -1+x^{2} y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
31.498 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.906 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=9 x^{2}+4 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.323 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.685 |
|
| \begin{align*}
x^{\prime }&=-2 x+3 y \\
y^{\prime }&=-2 x+5 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| \begin{align*}
x^{\prime }&=-x+4 y \\
y^{\prime }&=2 x-3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 3 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=-x+2 y+4 \,{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.835 |
|
| \begin{align*}
x^{\prime }&=6 x-7 y+10 \\
y^{\prime }&=x-2 y-2 \,{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.111 |
|
| \begin{align*}
y^{\prime }&=\frac {\cos \left (y\right ) \sec \left (x \right )}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
15.200 |
|
| \begin{align*}
y^{\prime }&=x \left (\cos \left (y\right )+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.944 |
|
| \begin{align*}
y^{\prime }&=\frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.396 |
|
| \begin{align*}
y^{\prime }&=\left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
14.233 |
|
| \begin{align*}
y^{\prime }&=1+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.946 |
|
| \begin{align*}
y^{\prime }&=x +1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
y^{\prime }&=1+\frac {\sec \left (x \right )}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime }&=x +\frac {\sec \left (x \right ) y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
19.623 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
29.467 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
14.858 |
|
| \begin{align*}
y^{\prime }&=\frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
13.636 |
|