2.2.101 Problems 10001 to 10100

Table 2.215: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

10001

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}

[_quadrature]

0.348

10002

\begin{align*} y^{\prime }&=\frac {-y x -1}{4 x^{3} y-2 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.991

10003

\begin{align*} \frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.157

10004

\begin{align*} y^{\prime }&=\sqrt {\frac {1+y}{y^{2}}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

277.403

10005

\begin{align*} y^{\prime }&=\sqrt {1-x^{2}-y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.572

10006

\begin{align*} y^{\prime }+\frac {y}{3}&=\frac {\left (1-2 x \right ) y^{4}}{3} \\ \end{align*}

[_Bernoulli]

3.503

10007

\begin{align*} y^{\prime }&=\sqrt {y}+x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Chini]

16.111

10008

\begin{align*} x^{2} y^{\prime }+y^{2}&=y y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.068

10009

\begin{align*} y&=y^{\prime } x +x^{2} {y^{\prime }}^{2} \\ \end{align*}

[_separable]

1.460

10010

\begin{align*} \left (x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.131

10011

\begin{align*} y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.349

10012

\begin{align*} \frac {y^{\prime }}{x +y}&=0 \\ \end{align*}

[_quadrature]

0.095

10013

\begin{align*} \frac {y^{\prime }}{x}&=0 \\ \end{align*}

[_quadrature]

0.287

10014

\begin{align*} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.274

10015

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.643

10016

\begin{align*} y^{\prime }&=\frac {5 x^{2}-y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

8.773

10017

\begin{align*} 2 t +3 x+\left (2+x\right ) x^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

24.753

10018

\begin{align*} y^{\prime }&=\frac {1}{1-y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.763

10019

\begin{align*} p^{\prime }&=a p-b p^{2} \\ p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\ \end{align*}

[_quadrature]

57.968

10020

\begin{align*} y^{2}+\frac {2}{x}+2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

6.898

10021

\begin{align*} f^{\prime } x -f&=\frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \\ \end{align*}

[_Clairaut]

14.093

10022

\begin{align*} y^{\prime } x -2 y+b y^{2}&=c \,x^{4} \\ \end{align*}

[_rational, _Riccati]

5.425

10023

\begin{align*} y^{\prime } x -y+y^{2}&=x^{{2}/{3}} \\ \end{align*}

[_rational, _Riccati]

61.654

10024

\begin{align*} u^{\prime }+u^{2}&=\frac {1}{x^{{4}/{5}}} \\ \end{align*}

[_rational, _Riccati]

0.303

10025

\begin{align*} y y^{\prime }-y&=x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.227

10026

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.938

10027

\begin{align*} 5 y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.349

10028

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

32.831

10029

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

34.414

10030

\begin{align*} y&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.201

10031

\begin{align*} y y^{\prime }&=1-x {y^{\prime }}^{3} \\ \end{align*}

[_dAlembert]

0.329

10032

\begin{align*} f^{\prime }&=\frac {1}{f} \\ \end{align*}

[_quadrature]

1.865

10033

\begin{align*} t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

7.299

10034

\begin{align*} \left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t&=0 \\ y \left (3\right ) &= 2 \pi \\ y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\ \end{align*}

[[_2nd_order, _missing_y]]

3.497

10035

\begin{align*} t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

13.191

10036

\begin{align*} t y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

24.003

10037

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

16.335

10038

\begin{align*} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.556

10039

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10.902

10040

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.802

10041

\begin{align*} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.007

10042

\begin{align*} y^{\prime \prime }&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

3.114

10043

\begin{align*} y^{\prime \prime }&=k \\ \end{align*}

[[_2nd_order, _quadrature]]

3.061

10044

\begin{align*} y^{\prime }&=-4 \sin \left (x -y\right )-4 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

33.014

10045

\begin{align*} y^{\prime }+\sin \left (x -y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

3.975

10046

\begin{align*} y^{\prime \prime }&=4 \sin \left (x \right )-4 \\ \end{align*}

[[_2nd_order, _quadrature]]

3.615

10047

\begin{align*} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.042

10048

\begin{align*} y y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.447

10049

\begin{align*} y y^{\prime \prime }&=x \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.262

10050

\begin{align*} y^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.348

10051

\begin{align*} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.048

10052

\begin{align*} 3 y y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.379

10053

\begin{align*} 3 y y^{\prime \prime }+y&=5 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6.357

10054

\begin{align*} a y y^{\prime \prime }+b y&=c \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.884

10055

\begin{align*} a y^{2} y^{\prime \prime }+b y^{2}&=c \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.470

10056

\begin{align*} a y y^{\prime \prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.074

10057

\begin{align*} x^{\prime }&=9 x+4 y \\ y^{\prime }&=-6 x-y \\ z^{\prime }&=6 x+4 y+3 z \\ \end{align*}

system_of_ODEs

0.658

10058

\begin{align*} x^{\prime }&=x-3 y \\ y^{\prime }&=3 x+7 y \\ \end{align*}

system_of_ODEs

0.355

10059

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=2 x+5 y \\ \end{align*}

system_of_ODEs

0.349

10060

\begin{align*} x^{\prime }&=7 x+y \\ y^{\prime }&=-4 x+3 y \\ \end{align*}

system_of_ODEs

0.385

10061

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=y \\ z^{\prime }&=z \\ \end{align*}

system_of_ODEs

0.487

10062

\begin{align*} x^{\prime }&=2 x+y-z \\ y^{\prime }&=-x+2 z \\ z^{\prime }&=-x-2 y+4 z \\ \end{align*}

system_of_ODEs

0.564

10063

\begin{align*} x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\ \end{align*}

[_quadrature]

16.764

10064

\begin{align*} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

2.157

10065

\begin{align*} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

3.094

10066

\begin{align*} y^{\prime }&=\frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \\ \end{align*}

[_separable]

178.355

10067

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ \end{align*}

[[_Riccati, _special]]

59.366

10068

\begin{align*} y^{\prime }&=2 \sqrt {y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

19.589

10069

\begin{align*} z^{\prime \prime }+3 z^{\prime }+2 z&=24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

42.429

10070

\begin{align*} y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

[_quadrature]

11.683

10071

\begin{align*} y^{\prime }&=x^{2}+y^{2}-1 \\ \end{align*}

[_Riccati]

140.263

10072

\begin{align*} y^{\prime }&=2 y \left (x \sqrt {y}-1\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Bernoulli]

13.560

10073

\begin{align*} y^{\prime \prime }&=\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

48.573

10074

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

48.343

10075

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

56.251

10076

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

44.716

10077

\begin{align*} y^{\prime \prime }-y y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

321.822

10078

\begin{align*} y^{\prime }-y^{2}-x -x^{2}&=0 \\ \end{align*}

[_Riccati]

38.202

10079

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.411

10080

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -2 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.076

10081

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -3 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.113

10082

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{2}-x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.460

10083

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{3}+2&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.648

10084

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{4}-6&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.532

10085

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{5}+24&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.640

10086

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.004

10087

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.403

10088

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{3}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.518

10089

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.827

10090

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.562

10091

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.653

10092

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.044

10093

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{2}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.413

10094

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.567

10095

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.492

10096

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y x -x^{2}-2&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.122

10097

\begin{align*} y^{\prime \prime }-4 y^{\prime }-y x -x^{2}-4&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.134

10098

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{3}+1&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.359

10099

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y x -x^{3}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.666

10100

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{3}+2&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.568