2.16.69 Problems 6801 to 6900

Table 2.154: Main lookup table. Sorted sequentially by problem number.

#

ODE

Program classification

CAS classification

Solved?

Verified?

time (sec)

6801

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

5.307

6802

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

dAlembert

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.375

6803

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

4.55

6804

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.401

6805

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.422

6806

\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

23.949

6807

\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

94.164

6808

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

unknown

[[_1st_order, _with_linear_symmetries]]

N/A

3.405

6809

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.012

6810

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.461

6811

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

94.181

6812

\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.528

6813

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

6.592

6814

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

dAlembert

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.581

6815

\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

92.384

6816

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.694

6817

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

dAlembert

[_rational, _dAlembert]

1.139

6818

\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.63

6819

\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.612

6820

\[ {}y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

25.161

6821

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.338

6822

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.013

6823

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

0.807

6824

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

second_order_integrable_as_is, second_order_ode_missing_x, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.438

6825

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.994

6826

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.032

6827

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.347

6828

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

i.c.

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

3.078

6829

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

i.c.

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

2.556

6830

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

142.67

6831

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.911

6832

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

kovacic, second_order_linear_constant_coeff, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x]]

1.576

6833

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.004

6834

\[ {}\cos \left (x \right ) y^{\prime \prime } = y^{\prime } \]

second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

2.085

6835

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.128

6836

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.937

6837

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

i.c.

second_order_ode_missing_x, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

63.49

6838

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

i.c.

second_order_ode_missing_x, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

62.529

6839

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

i.c.

second_order_ode_missing_x, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10.706

6840

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

i.c.

second_order_ode_missing_x, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6.464

6841

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

kovacic, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

1.612

6842

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.592

6843

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

0.592

6844

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.171

6845

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.645

6846

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.585

6847

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x]]

5.48

6848

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

5.556

6849

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.111

6850

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11.033

6851

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.155

6852

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

0.875

6853

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

second_order_ode_missing_y, second_order_nonlinear_solved_by_mainardi_lioville_method

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.083

6854

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.091

6855

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

1.299

6856

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

141.525

6857

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

0.686

6858

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

126.669

6859

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8.366

6860

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.635

6861

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

0.909

6862

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

kovacic, second_order_linear_constant_coeff, linear_second_order_ode_solved_by_an_integrating_factor

[[_2nd_order, _with_linear_symmetries]]

0.773

6863

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _with_linear_symmetries]]

0.688

6864

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _with_linear_symmetries]]

0.67

6865

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

8.249

6866

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

quadrature, separable

[_quadrature]

0.651

6867

\[ {}9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

79.343

6868

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries], _rational]

9.931

6869

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

8.614

6870

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.564

6871

\[ {}y^{2} {y^{\prime }}^{2}-y \left (1+x \right ) y^{\prime }+x = 0 \]

quadrature, separable

[_quadrature]

0.669

6872

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

10.965

6873

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

83.928

6874

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.161

6875

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

9.514

6876

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

8.799

6877

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

quadrature

[_quadrature]

0.295

6878

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

101.202

6879

\[ {}9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

7.156

6880

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+y^{2}+1 = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.059

6881

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

8.246

6882

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

linear

[_linear]

1.242

6883

\[ {}\left (y^{\prime }+1\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

clairaut

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.13

6884

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.22

6885

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

quadrature, separable

[_quadrature]

0.806

6886

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

dAlembert

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.45

6887

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.583

6888

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

117.751

6889

\[ {}y^{\prime \prime }+y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _missing_x]]

0.938

6890

\[ {}y^{\prime \prime }-9 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _missing_x]]

0.974

6891

\[ {}y^{\prime \prime }+3 x y^{\prime }+3 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _exact, _linear, _homogeneous]]

1.813

6892

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _exact, _linear, _homogeneous]]

1.494

6893

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _exact, _linear, _homogeneous]]

1.385

6894

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

1.154

6895

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 x y^{\prime }+20 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

1.828

6896

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

1.882

6897

\[ {}\left (x^{2}-9\right ) y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

2.393

6898

\[ {}y^{\prime \prime }+2 x y^{\prime }+5 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

2.072

6899

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _exact, _linear, _homogeneous]]

1.947

6900

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+3 y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_2nd_order, _with_linear_symmetries]]

2.461