2.2.113 Problems 11201 to 11300

Table 2.227: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11201

\(\left [\begin {array}{cc} 11 & -15 \\ 6 & -8 \end {array}\right ]\)

Eigenvectors

0.142

11202

\(\left [\begin {array}{cc} -1 & 4 \\ -1 & 3 \end {array}\right ]\)

Eigenvectors

0.099

11203

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.099

11204

\(\left [\begin {array}{cc} 5 & 1 \\ -9 & -1 \end {array}\right ]\)

Eigenvectors

0.103

11205

\(\left [\begin {array}{cc} 11 & 9 \\ -16 & -13 \end {array}\right ]\)

Eigenvectors

0.103

11206

\(\left [\begin {array}{ccc} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.165

11207

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end {array}\right ]\)

Eigenvectors

0.180

11208

\(\left [\begin {array}{ccc} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

0.178

11209

\(\left [\begin {array}{ccc} 3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

0.176

11210

\(\left [\begin {array}{ccc} 7 & -8 & 3 \\ 6 & -7 & 3 \\ 2 & -2 & 2 \end {array}\right ]\)

Eigenvectors

0.239

11211

\(\left [\begin {array}{ccc} 6 & -5 & 2 \\ 4 & -3 & 2 \\ 2 & -2 & 3 \end {array}\right ]\)

Eigenvectors

0.235

11212

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ -2 & 4 & -1 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

0.230

11213

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\)

Eigenvectors

0.246

11214

\(\left [\begin {array}{ccc} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.121

11215

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ -1 & 2 & 0 \\ -5 & 7 & -1 \end {array}\right ]\)

Eigenvectors

0.122

11216

\(\left [\begin {array}{ccc} -2 & 4 & -1 \\ -3 & 5 & -1 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.171

11217

\(\left [\begin {array}{ccc} 3 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end {array}\right ]\)

Eigenvectors

0.173

11218

\(\left [\begin {array}{cccc} 1 & 0 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end {array}\right ]\)

Eigenvectors

0.196

11219

\(\left [\begin {array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.188

11220

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.165

11221

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.171

11222

\(\left [\begin {array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.141

11223

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

0.386

11224

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

0.248

11225

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

0.927

11226

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

[_linear]

1.904

11227

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \]

[_Bernoulli]

2.247

11228

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.052

11229

\[ {}y^{\prime } = a y^{2}+b x +c \]

[_Riccati]

1.104

11230

\[ {}y^{\prime } = y^{2}-a^{2} x^{2}+3 a \]

[_Riccati]

1.643

11231

\[ {}y^{\prime } = y^{2}+a^{2} x^{2}+b x +c \]

[_Riccati]

8.329

11232

\[ {}y^{\prime } = a y^{2}+b \,x^{n} \]

[[_Riccati, _special]]

1.604

11233

\[ {}y^{\prime } = y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} \]

[_Riccati]

342.298

11234

\[ {}y^{\prime } = a y^{2}+b \,x^{2 n}+c \,x^{n -1} \]

[_Riccati]

229.576

11235

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

[[_homogeneous, ‘class G‘], _Riccati]

2.031

11236

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} \]

[_Riccati]

1.991

11237

\[ {}y^{\prime } = y^{2}+k \left (a x +b \right )^{n} \left (c x +d \right )^{-n -4} \]

[_Riccati]

4.632

11238

\[ {}y^{\prime } = a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \]

[_Riccati]

379.697

11239

\[ {}y^{\prime } = \left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \]

[_Riccati]

46.668

11240

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

3.121

11241

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

2.035

11242

\[ {}x^{2} y^{\prime } = x^{2} y^{2}-a^{2} x^{4}+a \left (1-2 b \right ) x^{2}-b \left (b +1\right ) \]

[_rational, _Riccati]

2.314

11243

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \,x^{n}+c \]

[_rational, _Riccati]

2.201

11244

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+a \,x^{2 m} \left (b \,x^{m}+c \right )^{n}-\frac {n^{2}}{4}+\frac {1}{4} \]

[_Riccati]

2.380

11245

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} = 0 \]

[_rational, _Riccati]

10.121

11246

\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

[_rational, [_Riccati, _special]]

1.181

11247

\[ {}a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s = 0 \]

[_rational, _Riccati]

4.941

11248

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

3.602

11249

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+c \,x^{m}+d \]

[_Riccati]

2.849

11250

\[ {}\left (a \,x^{n}+b \right ) y^{\prime } = b y^{2}+a \,x^{n -2} \]

[_rational, _Riccati]

3.665

11251

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{n -2}+b m \left (m -1\right ) x^{m -2} = 0 \]

[_rational, _Riccati]

5.357

11252

\[ {}y^{\prime } = a y^{2}+b y+c x +k \]

[_Riccati]

1.401

11253

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+a \,x^{n -1} \]

[_Riccati]

340.730

11254

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+b \,x^{n -1} \]

[_Riccati]

3.344

11255

\[ {}y^{\prime } = y^{2}+\left (\alpha x +\beta \right ) y+a \,x^{2}+b x +c \]

[_Riccati]

37.849

11256

\[ {}y^{\prime } = y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \]

[_Riccati]

2.093

11257

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +m +1}-a \,x^{m} \]

[_Riccati]

2.724

11258

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+b c \,x^{m}-a \,c^{2} x^{n} \]

[_Riccati]

2.945

11259

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \]

[_Riccati]

7.299

11260

\[ {}y^{\prime } = -a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \]

[_Riccati]

6.554

11261

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{k -1}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \]

[_Riccati]

5.202

11262

\[ {}y^{\prime } x = a y^{2}+b y+c \,x^{2 b} \]

[_rational, _Riccati]

1.839

11263

\[ {}y^{\prime } x = a y^{2}+b y+c \,x^{n} \]

[_rational, _Riccati]

1.894

11264

\[ {}y^{\prime } x = a y^{2}+\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \]

[_rational, _Riccati]

2.893

11265

\[ {}y^{\prime } x = x y^{2}+a y+b \,x^{n} \]

[_rational, _Riccati]

1.992

11266

\[ {}y^{\prime } x +a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0} = 0 \]

[_rational, _Riccati]

3.841

11267

\[ {}y^{\prime } x = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.484

11268

\[ {}y^{\prime } x = a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \]

[_rational, _Riccati]

2.335

11269

\[ {}y^{\prime } x = x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \]

[_rational, _Riccati]

2.481

11270

\[ {}y^{\prime } x = a \,x^{n} y^{2}+b y+c \,x^{m} \]

[_rational, _Riccati]

2.588

11271

\[ {}y^{\prime } x = a \,x^{2 n} y^{2}+\left (b \,x^{n}-n \right ) y+c \]

[_rational, _Riccati]

3.979

11272

\[ {}y^{\prime } x = a \,x^{2 n +m} y^{2}+\left (b \,x^{n +m}-n \right ) y+c \,x^{m} \]

[_rational, _Riccati]

111.208

11273

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

16.672

11274

\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

3.063

11275

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+y x -2 a^{2} x \]

[_rational, _Riccati]

1.507

11276

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+3 y x -2 a^{2} x \]

[_rational, _Riccati]

1.674

11277

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.363

11278

\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{2}+b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \]

[_rational, _Riccati]

337.691

11279

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{n}+s \]

[_rational, _Riccati]

2.497

11280

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \]

[_rational, _Riccati]

3.504

11281

\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \]

[_rational, _Riccati]

354.889

11282

\[ {}x^{2} y^{\prime } = \left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y^{2}+\left (a \,x^{n}+b \right ) x y+c \,x^{2} \]

[_rational, _Riccati]

510.902

11283

\[ {}\left (x^{2}-1\right ) y^{\prime }+\lambda \left (y^{2}-2 y x +1\right ) = 0 \]

[_rational, _Riccati]

5.145

11284

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha } = 0 \]

[_rational, _Riccati]

374.615

11285

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma = 0 \]

[_rational, _Riccati]

642.034

11286

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 y x +\left (1-a \right ) x^{2}-b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.398

11287

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.753

11288

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +\lambda c \]

[_rational, _Riccati]

534.002

11289

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \]

[_rational, _Riccati]

86.032

11290

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \]

[_rational, _Riccati]

80.562

11291

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.851

11292

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0} = 0 \]

[_rational, _Riccati]

41.198

11293

\[ {}x^{3} y^{\prime } = x^{3} a y^{2}+\left (b \,x^{2}+c \right ) y+s x \]

[_rational, _Riccati]

9.462

11294

\[ {}x^{3} y^{\prime } = x^{3} a y^{2}+x \left (b x +c \right ) y+\alpha x +\beta \]

[_rational, _Riccati]

233.394

11295

\[ {}x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x = 0 \]

[_rational, _Riccati]

5.029

11296

\[ {}x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+\alpha x +\beta = 0 \]

[_rational, _Riccati]

13.199

11297

\[ {}\left (a \,x^{2}+b x +e \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.696

11298

\[ {}x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s = 0 \]

[_rational, _Riccati]

12.859

11299

\[ {}a \left (x^{2}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+b x \left (x^{2}-1\right ) y+c \,x^{2}+d x +s = 0 \]

[_rational, _Riccati]

2.638

11300

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+b \,x^{n} y+c \,x^{m}+d \]

[_Riccati]

3.948