2.2.118 Problems 11701 to 11800

Table 2.237: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11701

\[ {}y y^{\prime }-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y = -\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.447

11702

\[ {}y y^{\prime } = \left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.388

11703

\[ {}y y^{\prime } = \left (a \left (2 \mu +\lambda \right ) {\mathrm e}^{\lambda x}+b \right ) {\mathrm e}^{\mu x} y+\left (-a^{2} \mu \,{\mathrm e}^{2 \lambda x}-a b \,{\mathrm e}^{\lambda x}+c \right ) {\mathrm e}^{2 \mu x} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.982

11704

\[ {}y y^{\prime } = \left (a \,{\mathrm e}^{\lambda x}+b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.906

11705

\[ {}y y^{\prime } = {\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.660

11706

\[ {}y y^{\prime } = {\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.216

11707

\[ {}y y^{\prime }+a \left (2 b x +1\right ) {\mathrm e}^{b x} y = -a^{2} b \,x^{2} {\mathrm e}^{2 b x} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.201

11708

\[ {}y y^{\prime }-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y = -a^{2} n \left (n +1\right ) \left (n x +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.051

11709

\[ {}y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y = -a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.423

11710

\[ {}y y^{\prime } = \left (a \cosh \left (x \right )+b \right ) y-a b \sinh \left (x \right )+c \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

5.021

11711

\[ {}y y^{\prime } = \left (a \sinh \left (x \right )+b \right ) y-a b \cosh \left (x \right )+c \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

5.580

11712

\[ {}y y^{\prime } = \left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

0.905

11713

\[ {}y y^{\prime } = \left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.014

11714

\[ {}y y^{\prime } = a x \cos \left (\lambda \,x^{2}\right ) y+x \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.719

11715

\[ {}y y^{\prime } = a x \sin \left (\lambda \,x^{2}\right ) y+x \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.665

11716

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.060

11717

\[ {}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.196

11718

\[ {}\left (y+a k \,x^{2}+b x +c \right ) y^{\prime } = -a y^{2}+2 a k x y+m y+k \left (k +b -m \right ) x +s \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.153

11719

\[ {}\left (y+A \,x^{n}+a \right ) y^{\prime }+n A \,x^{n -1} y+k \,x^{m}+b = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

89.677

11720

\[ {}\left (y+a \,x^{n +1}+b \,x^{n}\right ) y^{\prime } = \left (a n \,x^{n}+c \,x^{n -1}\right ) y \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.805

11721

\[ {}x y y^{\prime } = a y^{2}+b y+c \,x^{n}+s \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.879

11722

\[ {}x y y^{\prime } = -n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.090

11723

\[ {}y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _missing_x]]

1.512

11724

\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.892

11725

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.868

11726

\[ {}y^{\prime \prime }-\left (a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.417

11727

\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.106

11728

\[ {}y^{\prime \prime }-\left (a \,x^{2}+b c x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.381

11729

\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

0.880

11730

\[ {}y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.176

11731

\[ {}y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.161

11732

\[ {}y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.175

11733

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

0.951

11734

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.667

11735

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.516

11736

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.285

11737

\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.239

11738

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.361

11739

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.405

11740

\[ {}y^{\prime \prime }+y^{\prime } x +\left (n -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.401

11741

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.504

11742

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.503

11743

\[ {}y^{\prime \prime }+a x y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.477

11744

\[ {}y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.547

11745

\[ {}y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.541

11746

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.526

11747

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.255

11748

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.303

11749

\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.145

11750

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.611

11751

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.226

11752

\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.106

11753

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.276

11754

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.649

11755

\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.433

11756

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.401

11757

\[ {}y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.451

11758

\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.212

11759

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.623

11760

\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.583

11761

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.480

11762

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.454

11763

\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.469

11764

\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.180

11765

\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.740

11766

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.967

11767

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.622

11768

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.147

11769

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.817

11770

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.928

11771

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.047

11772

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.575

11773

\[ {}y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.719

11774

\[ {}y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.859

11775

\[ {}y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.311

11776

\[ {}y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.988

11777

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.672

11778

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.103

11779

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.484

11780

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.852

11781

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{n +m}+b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.993

11782

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{n +m}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.886

11783

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.218

11784

\[ {}x y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

0.884

11785

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.075

11786

\[ {}x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.732

11787

\[ {}x y^{\prime \prime }+n y^{\prime }+b \,x^{1-2 n} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.782

11788

\[ {}x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y = 0 \]

[[_Emden, _Fowler]]

0.332

11789

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

1.065

11790

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.608

11791

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.233

11792

\[ {}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

[_Laguerre]

0.732

11793

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.135

11794

\[ {}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.136

11795

\[ {}x y^{\prime \prime }+\left (\left (a +b \right ) x +n +m \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.319

11796

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.681

11797

\[ {}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.435

11798

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.503

11799

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

[[_2nd_order, _missing_y]]

1.114

11800

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.586