2.2.117 Problems 11601 to 11700

Table 2.235: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11601

\[ {}\left [\begin {array}{c} x=x^{\prime } t +f \left (x^{\prime }, y^{\prime }\right ) \\ y=t y^{\prime }+g \left (x^{\prime }, y^{\prime }\right ) \end {array}\right ] \]

system_of_ODEs

0.071

11602

\[ {}\left [\begin {array}{c} x^{\prime \prime }=a \,{\mathrm e}^{2 x}-{\mathrm e}^{-x}+{\mathrm e}^{-2 x} \cos \left (y\right )^{2} \\ y^{\prime \prime }={\mathrm e}^{-2 x} \sin \left (y\right ) \cos \left (y\right )-\frac {\sin \left (y\right )}{\cos \left (y\right )^{3}} \end {array}\right ] \]

system_of_ODEs

0.055

11603

\[ {}\left [\begin {array}{c} x^{\prime \prime }=\frac {k x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ y^{\prime \prime }=\frac {k y}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \end {array}\right ] \]

system_of_ODEs

0.049

11604

\[ {}\left [\begin {array}{c} x^{\prime }=y-z \\ y^{\prime }=x^{2}+y \\ z^{\prime }=x^{2}+z \end {array}\right ] \]

system_of_ODEs

0.053

11605

\[ {}\left [\begin {array}{c} a x^{\prime }=\left (b -c \right ) y z \\ b y^{\prime }=\left (c -a \right ) z x \\ c z^{\prime }=\left (a -b \right ) x y \end {array}\right ] \]

system_of_ODEs

0.057

11606

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y-z\right ) \\ y^{\prime }=y \left (z-x\right ) \\ z^{\prime }=z \left (x-y\right ) \end {array}\right ] \]

system_of_ODEs

0.056

11607

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }=x y \\ y^{\prime }+z^{\prime }=y z \\ x^{\prime }+z^{\prime }=x z \end {array}\right ] \]

system_of_ODEs

0.057

11608

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x^{2}}{2}-\frac {y}{24} \\ y^{\prime }=2 x y-3 z \\ z^{\prime }=3 x z-\frac {y^{2}}{6} \end {array}\right ] \]

system_of_ODEs

0.057

11609

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=y \left (z^{2}-x^{2}\right ) \\ z^{\prime }=z \left (x^{2}-y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.056

11610

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=-y \left (z^{2}+x^{2}\right ) \\ z^{\prime }=z \left (x^{2}+y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.056

11611

\[ {}\left [\begin {array}{c} x^{\prime }=-x \,y^{2}+x+y \\ y^{\prime }=y \,x^{2}-x-y \\ z^{\prime }=y^{2}-x^{2} \end {array}\right ] \]

system_of_ODEs

0.058

11612

\[ {}\left [\begin {array}{c} \left (x-y\right ) \left (x-z\right ) x^{\prime }=f \left (t \right ) \\ \left (y-x\right ) \left (y-z\right ) y^{\prime }=f \left (t \right ) \\ \left (z-x\right ) \left (z-y\right ) z^{\prime }=f \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.063

11613

\[ {}\left [\begin {array}{c} x_{1}^{\prime } \sin \left (x_{2}\right )=x_{4} \sin \left (x_{3}\right )+x_{5} \cos \left (x_{3}\right ) \\ x_{2}^{\prime }=x_{4} \cos \left (x_{3}\right )-x_{5} \sin \left (x_{3}\right ) \\ x_{3}^{\prime }+x_{1}^{\prime } \cos \left (x_{2}\right )=a \\ x_{4}^{\prime }-\left (1-\lambda \right ) a x_{5}=-m \sin \left (x_{2}\right ) \cos \left (x_{3}\right ) \\ x_{5}^{\prime }+\left (1-\lambda \right ) a x_{4}=m \sin \left (x_{2}\right ) \sin \left (x_{3}\right ) \end {array}\right ] \]

system_of_ODEs

0.076

11614

\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.141

11615

\(\left [\begin {array}{cc} 5 & -6 \\ 3 & -4 \end {array}\right ]\)

Eigenvectors

0.145

11616

\(\left [\begin {array}{cc} 8 & -6 \\ 3 & -1 \end {array}\right ]\)

Eigenvectors

0.143

11617

\(\left [\begin {array}{cc} 4 & -3 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.147

11618

\(\left [\begin {array}{cc} 10 & -9 \\ 6 & -5 \end {array}\right ]\)

Eigenvectors

0.148

11619

\(\left [\begin {array}{cc} 6 & -4 \\ 3 & -1 \end {array}\right ]\)

Eigenvectors

0.147

11620

\(\left [\begin {array}{cc} 10 & -8 \\ 6 & -4 \end {array}\right ]\)

Eigenvectors

0.151

11621

\(\left [\begin {array}{cc} 7 & -6 \\ 12 & -10 \end {array}\right ]\)

Eigenvectors

0.157

11622

\(\left [\begin {array}{cc} 8 & -10 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.148

11623

\(\left [\begin {array}{cc} 9 & -10 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

0.152

11624

\(\left [\begin {array}{cc} 19 & -10 \\ 21 & -10 \end {array}\right ]\)

Eigenvectors

0.155

11625

\(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\)

Eigenvectors

0.158

11626

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end {array}\right ]\)

Eigenvectors

0.253

11627

\(\left [\begin {array}{ccc} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end {array}\right ]\)

Eigenvectors

0.269

11628

\(\left [\begin {array}{ccc} 2 & -2 & 0 \\ 2 & -2 & -1 \\ -2 & 2 & 3 \end {array}\right ]\)

Eigenvectors

0.255

11629

\(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\)

Eigenvectors

0.292

11630

\(\left [\begin {array}{ccc} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end {array}\right ]\)

Eigenvectors

0.233

11631

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -6 & 8 & 2 \\ 12 & -15 & -3 \end {array}\right ]\)

Eigenvectors

0.271

11632

\(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

0.185

11633

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\)

Eigenvectors

0.208

11634

\(\left [\begin {array}{ccc} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.194

11635

\(\left [\begin {array}{ccc} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end {array}\right ]\)

Eigenvectors

0.198

11636

\(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\)

Eigenvectors

0.334

11637

\(\left [\begin {array}{cccc} 1 & 0 & 4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end {array}\right ]\)

Eigenvectors

0.221

11638

\(\left [\begin {array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.208

11639

\(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\)

Eigenvectors

0.335

11640

\(\left [\begin {array}{cc} 0 & 1 \\ -1 & 0 \end {array}\right ]\)

Eigenvectors

0.167

11641

\(\left [\begin {array}{cc} 0 & -6 \\ 6 & 0 \end {array}\right ]\)

Eigenvectors

0.178

11642

\(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\)

Eigenvectors

0.192

11643

\(\left [\begin {array}{cc} 0 & -12 \\ 12 & 0 \end {array}\right ]\)

Eigenvectors

0.179

11644

\(\left [\begin {array}{cc} 0 & 24 \\ -6 & 0 \end {array}\right ]\)

Eigenvectors

0.188

11645

\(\left [\begin {array}{cc} 0 & -4 \\ 36 & 0 \end {array}\right ]\)

Eigenvectors

0.187

11646

\(\left [\begin {array}{ccc} 32 & -67 & 47 \\ 7 & -14 & 13 \\ -7 & 15 & -6 \end {array}\right ]\)

Eigenvectors

0.264

11647

\(\left [\begin {array}{cccc} 22 & -9 & -8 & -8 \\ 10 & -7 & -14 & 2 \\ 10 & 0 & 8 & -10 \\ 29 & -9 & -3 & -15 \end {array}\right ]\)

Eigenvectors

0.529

11648

\(\left [\begin {array}{cc} 5 & -4 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.151

11649

\(\left [\begin {array}{cc} 6 & -6 \\ 4 & -4 \end {array}\right ]\)

Eigenvectors

0.146

11650

\(\left [\begin {array}{cc} 5 & -3 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

0.152

11651

\(\left [\begin {array}{cc} 5 & -4 \\ 3 & -2 \end {array}\right ]\)

Eigenvectors

0.148

11652

\(\left [\begin {array}{cc} 9 & -8 \\ 6 & -5 \end {array}\right ]\)

Eigenvectors

0.148

11653

\(\left [\begin {array}{cc} 10 & -6 \\ 12 & -7 \end {array}\right ]\)

Eigenvectors

0.151

11654

\(\left [\begin {array}{cc} 6 & -10 \\ 2 & -3 \end {array}\right ]\)

Eigenvectors

0.152

11655

\(\left [\begin {array}{cc} 11 & -15 \\ 6 & -8 \end {array}\right ]\)

Eigenvectors

0.156

11656

\(\left [\begin {array}{cc} -1 & 4 \\ -1 & 3 \end {array}\right ]\)

Eigenvectors

0.108

11657

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.104

11658

\(\left [\begin {array}{cc} 5 & 1 \\ -9 & -1 \end {array}\right ]\)

Eigenvectors

0.112

11659

\(\left [\begin {array}{cc} 11 & 9 \\ -16 & -13 \end {array}\right ]\)

Eigenvectors

0.112

11660

\(\left [\begin {array}{ccc} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.171

11661

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end {array}\right ]\)

Eigenvectors

0.189

11662

\(\left [\begin {array}{ccc} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

0.192

11663

\(\left [\begin {array}{ccc} 3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

0.188

11664

\(\left [\begin {array}{ccc} 7 & -8 & 3 \\ 6 & -7 & 3 \\ 2 & -2 & 2 \end {array}\right ]\)

Eigenvectors

0.264

11665

\(\left [\begin {array}{ccc} 6 & -5 & 2 \\ 4 & -3 & 2 \\ 2 & -2 & 3 \end {array}\right ]\)

Eigenvectors

0.261

11666

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ -2 & 4 & -1 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

0.257

11667

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\)

Eigenvectors

0.263

11668

\(\left [\begin {array}{ccc} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.135

11669

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ -1 & 2 & 0 \\ -5 & 7 & -1 \end {array}\right ]\)

Eigenvectors

0.132

11670

\(\left [\begin {array}{ccc} -2 & 4 & -1 \\ -3 & 5 & -1 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.188

11671

\(\left [\begin {array}{ccc} 3 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end {array}\right ]\)

Eigenvectors

0.193

11672

\(\left [\begin {array}{cccc} 1 & 0 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end {array}\right ]\)

Eigenvectors

0.220

11673

\(\left [\begin {array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.215

11674

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.182

11675

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.180

11676

\(\left [\begin {array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.149

11677

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

0.466

11678

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

0.670

11679

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

1.036

11680

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

[_linear]

2.166

11681

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \]

[_Bernoulli]

2.619

11682

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.294

11683

\[ {}y^{\prime } = y^{2} a +b x +c \]

[_Riccati]

1.354

11684

\[ {}y^{\prime } = y^{2}-a^{2} x^{2}+3 a \]

[_Riccati]

1.904

11685

\[ {}y^{\prime } = y^{2}+a^{2} x^{2}+b x +c \]

[_Riccati]

8.704

11686

\[ {}y^{\prime } = y^{2} a +b \,x^{n} \]

[[_Riccati, _special]]

1.632

11687

\[ {}y^{\prime } = y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} \]

[_Riccati]

595.205

11688

\[ {}y^{\prime } = y^{2} a +b \,x^{2 n}+c \,x^{n -1} \]

[_Riccati]

3.506

11689

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

[[_homogeneous, ‘class G‘], _Riccati]

2.635

11690

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} \]

[_Riccati]

2.177

11691

\[ {}y^{\prime } = y^{2}+k \left (a x +b \right )^{n} \left (c x +d \right )^{-n -4} \]

[_Riccati]

7.766

11692

\[ {}y^{\prime } = a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \]

[_Riccati]

410.809

11693

\[ {}y^{\prime } = \left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \]

[_Riccati]

50.787

11694

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

3.579

11695

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

1.976

11696

\[ {}x^{2} y^{\prime } = x^{2} y^{2}-a^{2} x^{4}+a \left (-2 b +1\right ) x^{2}-b \left (b +1\right ) \]

[_rational, _Riccati]

2.595

11697

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \,x^{n}+c \]

[_rational, _Riccati]

2.344

11698

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+a \,x^{2 m} \left (b \,x^{m}+c \right )^{n}-\frac {n^{2}}{4}+\frac {1}{4} \]

[_Riccati]

4.306

11699

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} = 0 \]

[_rational, _Riccati]

8.400

11700

\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

[_rational, [_Riccati, _special]]

3.170