2.2.120 Problems 11901 to 12000

Table 2.241: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11901

\[ {}\left [\begin {array}{c} x^{\prime }-y+z=0 \\ -x+y^{\prime }-y=t \\ z^{\prime }-x-z=t \end {array}\right ] \]

system_of_ODEs

0.533

11902

\[ {}\left [\begin {array}{c} a x^{\prime }=b c \left (y-z\right ) \\ b y^{\prime }=c a \left (z-x\right ) \\ c z^{\prime }=a b \left (x-y\right ) \end {array}\right ] \]

system_of_ODEs

1.385

11903

\[ {}\left [\begin {array}{c} x^{\prime }=c y-b z \\ y^{\prime }=a z-c x \\ z^{\prime }=b x-a y \end {array}\right ] \]

system_of_ODEs

1.216

11904

\[ {}\left [\begin {array}{c} x^{\prime }=h \left (t \right ) y-g \left (t \right ) z \\ y^{\prime }=f \left (t \right ) z-h \left (t \right ) x \\ z^{\prime }=x g \left (t \right )-y f \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.063

11905

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=y+z-x \\ z^{\prime }=x-y+z \end {array}\right ] \]

system_of_ODEs

0.707

11906

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+48 y-28 z \\ y^{\prime }=-4 x+40 y-22 z \\ z^{\prime }=-6 x+57 y-31 z \end {array}\right ] \]

system_of_ODEs

0.491

11907

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-72 y+44 z \\ y^{\prime }=4 x-4 y+26 z \\ z^{\prime }=6 x-63 y+38 z \end {array}\right ] \]

system_of_ODEs

10.431

11908

\[ {}\left [\begin {array}{c} x^{\prime }=a x+g y+\beta z \\ y^{\prime }=g x+b y+\alpha z \\ z^{\prime }=\beta x+\alpha y+c z \end {array}\right ] \]

system_of_ODEs

160.504

11909

\[ {}\left [\begin {array}{c} t x^{\prime }=2 x-t \\ t^{3} y^{\prime }=-x+t^{2} y+t \\ t^{4} z^{\prime }=-x-t^{2} y+t^{3} z+t \end {array}\right ] \]

system_of_ODEs

0.077

11910

\[ {}\left [\begin {array}{c} a t x^{\prime }=b c \left (y-z\right ) \\ b t y^{\prime }=c a \left (z-x\right ) \\ c t z^{\prime }=a b \left (x-y\right ) \end {array}\right ] \]

system_of_ODEs

0.107

11911

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=a x_{2}+b x_{3} \cos \left (c t \right )+b x_{4} \sin \left (c t \right ) \\ x_{2}^{\prime }=-a x_{1}+b x_{3} \sin \left (c t \right )-b x_{4} \cos \left (c t \right ) \\ x_{3}^{\prime }=-b x_{1} \cos \left (c t \right )-b x_{2} \sin \left (c t \right )+a x_{4} \\ x_{4}^{\prime }=-b x_{1} \sin \left (c t \right )+b x_{2} \cos \left (c t \right )-a x_{3} \end {array}\right ] \]

system_of_ODEs

0.088

11912

\[ {}\left [\begin {array}{c} x^{\prime }=-x \left (x+y\right ) \\ y^{\prime }=y \left (x+y\right ) \end {array}\right ] \]

system_of_ODEs

0.054

11913

\[ {}\left [\begin {array}{c} x^{\prime }=\left (a y+b \right ) x \\ y^{\prime }=\left (c x+d \right ) y \end {array}\right ] \]

system_of_ODEs

0.057

11914

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (a \left (p x+q y\right )+\alpha \right ) \\ y^{\prime }=y \left (\beta +b \left (p x+q y\right )\right ) \end {array}\right ] \]

system_of_ODEs

0.058

11915

\[ {}\left [\begin {array}{c} x^{\prime }=h \left (a -x\right ) \left (c -x-y\right ) \\ y^{\prime }=k \left (b -y\right ) \left (c -x-y\right ) \end {array}\right ] \]

system_of_ODEs

0.062

11916

\[ {}\left [\begin {array}{c} x^{\prime }=y^{2}-\cos \left (x\right ) \\ y^{\prime }=-y \sin \left (x\right ) \end {array}\right ] \]

system_of_ODEs

0.059

11917

\[ {}\left [\begin {array}{c} x^{\prime }=-x \,y^{2}+x+y \\ y^{\prime }=y \,x^{2}-x-y \end {array}\right ] \]

system_of_ODEs

0.056

11918

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }=-x+y-y \left (x^{2}+y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.058

11919

\[ {}\left [\begin {array}{c} x^{\prime }=-y+x \left (x^{2}+y^{2}-1\right ) \\ y^{\prime }=x+y \left (x^{2}+y^{2}-1\right ) \end {array}\right ] \]

system_of_ODEs

0.061

11920

\[ {}\left [\begin {array}{c} x^{\prime }=-y \left (x^{2}+y^{2}\right ) \\ y^{\prime }=\left \{\begin {array}{cc} x^{2}+y^{2} & 2 x\le x^{2}+y^{2} \\ \left (\frac {x}{2}-\frac {y^{2}}{2 x}\right ) \left (x^{2}+y^{2}\right ) & \operatorname {otherwise} \end {array}\right . \end {array}\right ] \]

system_of_ODEs

0.062

11921

\[ {}\left [\begin {array}{c} x^{\prime }=-y+\left (\left \{\begin {array}{cc} x \left (x^{2}+y^{2}-1\right ) \sin \left (\frac {1}{x^{2}+y^{2}}\right ) & x^{2}+y^{2}\neq 1 \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \\ y^{\prime }=x+\left (\left \{\begin {array}{cc} y \left (x^{2}+y^{2}-1\right ) \sin \left (\frac {1}{x^{2}+y^{2}}\right ) & x^{2}+y^{2}\neq 1 \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \end {array}\right ] \]

system_of_ODEs

0.071

11922

\[ {}\left [\begin {array}{c} \left (t^{2}+1\right ) x^{\prime }=-t x+y \\ \left (t^{2}+1\right ) y^{\prime }=-x-t y \end {array}\right ] \]

system_of_ODEs

0.062

11923

\[ {}\left [\begin {array}{c} \left (x^{2}+y^{2}-t^{2}\right ) x^{\prime }=-2 t x \\ \left (x^{2}+y^{2}-t^{2}\right ) y^{\prime }=-2 t y \end {array}\right ] \]

system_of_ODEs

0.065

11924

\[ {}\left [\begin {array}{c} {x^{\prime }}^{2}+t x^{\prime }+a y^{\prime }-x=0 \\ x^{\prime } y^{\prime }+t y^{\prime }-y=0 \end {array}\right ] \]

system_of_ODEs

0.084

11925

\[ {}\left [\begin {array}{c} x=t x^{\prime }+f \left (x^{\prime }, y^{\prime }\right ) \\ y=t y^{\prime }+g \left (x^{\prime }, y^{\prime }\right ) \end {array}\right ] \]

system_of_ODEs

0.084

11926

\[ {}\left [\begin {array}{c} x^{\prime \prime }=a \,{\mathrm e}^{2 x}-{\mathrm e}^{-x}+{\mathrm e}^{-2 x} \cos \left (y\right )^{2} \\ y^{\prime \prime }={\mathrm e}^{-2 x} \sin \left (y\right ) \cos \left (y\right )-\frac {\sin \left (y\right )}{\cos \left (y\right )^{3}} \end {array}\right ] \]

system_of_ODEs

0.066

11927

\[ {}\left [\begin {array}{c} x^{\prime \prime }=\frac {k x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ y^{\prime \prime }=\frac {k y}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \end {array}\right ] \]

system_of_ODEs

0.056

11928

\[ {}\left [\begin {array}{c} x^{\prime }=y-z \\ y^{\prime }=x^{2}+y \\ z^{\prime }=x^{2}+z \end {array}\right ] \]

system_of_ODEs

0.061

11929

\[ {}\left [\begin {array}{c} a x^{\prime }=\left (b -c \right ) y z \\ b y^{\prime }=\left (c -a \right ) z x \\ c z^{\prime }=\left (a -b \right ) x y \end {array}\right ] \]

system_of_ODEs

0.068

11930

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y-z\right ) \\ y^{\prime }=y \left (z-x\right ) \\ z^{\prime }=z \left (x-y\right ) \end {array}\right ] \]

system_of_ODEs

0.060

11931

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }=x y \\ y^{\prime }+z^{\prime }=y z \\ x^{\prime }+z^{\prime }=x z \end {array}\right ] \]

system_of_ODEs

0.069

11932

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x^{2}}{2}-\frac {y}{24} \\ y^{\prime }=2 x y-3 z \\ z^{\prime }=3 x z-\frac {y^{2}}{6} \end {array}\right ] \]

system_of_ODEs

0.062

11933

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=y \left (z^{2}-x^{2}\right ) \\ z^{\prime }=z \left (x^{2}-y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.065

11934

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=-y \left (z^{2}+x^{2}\right ) \\ z^{\prime }=z \left (x^{2}+y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.066

11935

\[ {}\left [\begin {array}{c} x^{\prime }=-x \,y^{2}+x+y \\ y^{\prime }=y \,x^{2}-x-y \\ z^{\prime }=y^{2}-x^{2} \end {array}\right ] \]

system_of_ODEs

0.062

11936

\[ {}\left [\begin {array}{c} \left (x-y\right ) \left (x-z\right ) x^{\prime }=f \left (t \right ) \\ \left (y-x\right ) \left (y-z\right ) y^{\prime }=f \left (t \right ) \\ \left (z-x\right ) \left (z-y\right ) z^{\prime }=f \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.078

11937

\[ {}\left [\begin {array}{c} x_{1}^{\prime } \sin \left (x_{2}\right )=x_{4} \sin \left (x_{3}\right )+x_{5} \cos \left (x_{3}\right ) \\ x_{2}^{\prime }=x_{4} \cos \left (x_{3}\right )-x_{5} \sin \left (x_{3}\right ) \\ x_{3}^{\prime }+x_{1}^{\prime } \cos \left (x_{2}\right )=a \\ x_{4}^{\prime }-\left (1-\lambda \right ) a x_{5}=-m \sin \left (x_{2}\right ) \cos \left (x_{3}\right ) \\ x_{5}^{\prime }+\left (1-\lambda \right ) a x_{4}=m \sin \left (x_{2}\right ) \sin \left (x_{3}\right ) \end {array}\right ] \]

system_of_ODEs

0.101

11938

\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.147

11939

\(\left [\begin {array}{cc} 5 & -6 \\ 3 & -4 \end {array}\right ]\)

Eigenvectors

0.151

11940

\(\left [\begin {array}{cc} 8 & -6 \\ 3 & -1 \end {array}\right ]\)

Eigenvectors

0.141

11941

\(\left [\begin {array}{cc} 4 & -3 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.148

11942

\(\left [\begin {array}{cc} 10 & -9 \\ 6 & -5 \end {array}\right ]\)

Eigenvectors

0.148

11943

\(\left [\begin {array}{cc} 6 & -4 \\ 3 & -1 \end {array}\right ]\)

Eigenvectors

0.138

11944

\(\left [\begin {array}{cc} 10 & -8 \\ 6 & -4 \end {array}\right ]\)

Eigenvectors

0.146

11945

\(\left [\begin {array}{cc} 7 & -6 \\ 12 & -10 \end {array}\right ]\)

Eigenvectors

0.153

11946

\(\left [\begin {array}{cc} 8 & -10 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.149

11947

\(\left [\begin {array}{cc} 9 & -10 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

0.144

11948

\(\left [\begin {array}{cc} 19 & -10 \\ 21 & -10 \end {array}\right ]\)

Eigenvectors

0.146

11949

\(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\)

Eigenvectors

0.144

11950

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end {array}\right ]\)

Eigenvectors

0.245

11951

\(\left [\begin {array}{ccc} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end {array}\right ]\)

Eigenvectors

0.245

11952

\(\left [\begin {array}{ccc} 2 & -2 & 0 \\ 2 & -2 & -1 \\ -2 & 2 & 3 \end {array}\right ]\)

Eigenvectors

0.240

11953

\(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\)

Eigenvectors

0.238

11954

\(\left [\begin {array}{ccc} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end {array}\right ]\)

Eigenvectors

0.224

11955

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -6 & 8 & 2 \\ 12 & -15 & -3 \end {array}\right ]\)

Eigenvectors

0.253

11956

\(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

0.172

11957

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\)

Eigenvectors

0.203

11958

\(\left [\begin {array}{ccc} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.183

11959

\(\left [\begin {array}{ccc} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end {array}\right ]\)

Eigenvectors

0.186

11960

\(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\)

Eigenvectors

0.306

11961

\(\left [\begin {array}{cccc} 1 & 0 & 4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end {array}\right ]\)

Eigenvectors

0.208

11962

\(\left [\begin {array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.202

11963

\(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\)

Eigenvectors

0.316

11964

\(\left [\begin {array}{cc} 0 & 1 \\ -1 & 0 \end {array}\right ]\)

Eigenvectors

0.171

11965

\(\left [\begin {array}{cc} 0 & -6 \\ 6 & 0 \end {array}\right ]\)

Eigenvectors

0.175

11966

\(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\)

Eigenvectors

0.184

11967

\(\left [\begin {array}{cc} 0 & -12 \\ 12 & 0 \end {array}\right ]\)

Eigenvectors

0.178

11968

\(\left [\begin {array}{cc} 0 & 24 \\ -6 & 0 \end {array}\right ]\)

Eigenvectors

0.175

11969

\(\left [\begin {array}{cc} 0 & -4 \\ 36 & 0 \end {array}\right ]\)

Eigenvectors

0.180

11970

\(\left [\begin {array}{ccc} 32 & -67 & 47 \\ 7 & -14 & 13 \\ -7 & 15 & -6 \end {array}\right ]\)

Eigenvectors

0.260

11971

\(\left [\begin {array}{cccc} 22 & -9 & -8 & -8 \\ 10 & -7 & -14 & 2 \\ 10 & 0 & 8 & -10 \\ 29 & -9 & -3 & -15 \end {array}\right ]\)

Eigenvectors

0.479

11972

\(\left [\begin {array}{cc} 5 & -4 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.143

11973

\(\left [\begin {array}{cc} 6 & -6 \\ 4 & -4 \end {array}\right ]\)

Eigenvectors

0.147

11974

\(\left [\begin {array}{cc} 5 & -3 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

0.141

11975

\(\left [\begin {array}{cc} 5 & -4 \\ 3 & -2 \end {array}\right ]\)

Eigenvectors

0.142

11976

\(\left [\begin {array}{cc} 9 & -8 \\ 6 & -5 \end {array}\right ]\)

Eigenvectors

0.143

11977

\(\left [\begin {array}{cc} 10 & -6 \\ 12 & -7 \end {array}\right ]\)

Eigenvectors

0.151

11978

\(\left [\begin {array}{cc} 6 & -10 \\ 2 & -3 \end {array}\right ]\)

Eigenvectors

0.144

11979

\(\left [\begin {array}{cc} 11 & -15 \\ 6 & -8 \end {array}\right ]\)

Eigenvectors

0.151

11980

\(\left [\begin {array}{cc} -1 & 4 \\ -1 & 3 \end {array}\right ]\)

Eigenvectors

0.105

11981

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.105

11982

\(\left [\begin {array}{cc} 5 & 1 \\ -9 & -1 \end {array}\right ]\)

Eigenvectors

0.113

11983

\(\left [\begin {array}{cc} 11 & 9 \\ -16 & -13 \end {array}\right ]\)

Eigenvectors

0.109

11984

\(\left [\begin {array}{ccc} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.171

11985

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end {array}\right ]\)

Eigenvectors

0.189

11986

\(\left [\begin {array}{ccc} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

0.181

11987

\(\left [\begin {array}{ccc} 3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

0.176

11988

\(\left [\begin {array}{ccc} 7 & -8 & 3 \\ 6 & -7 & 3 \\ 2 & -2 & 2 \end {array}\right ]\)

Eigenvectors

0.246

11989

\(\left [\begin {array}{ccc} 6 & -5 & 2 \\ 4 & -3 & 2 \\ 2 & -2 & 3 \end {array}\right ]\)

Eigenvectors

0.239

11990

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ -2 & 4 & -1 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

0.240

11991

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\)

Eigenvectors

0.252

11992

\(\left [\begin {array}{ccc} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.128

11993

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ -1 & 2 & 0 \\ -5 & 7 & -1 \end {array}\right ]\)

Eigenvectors

0.123

11994

\(\left [\begin {array}{ccc} -2 & 4 & -1 \\ -3 & 5 & -1 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.177

11995

\(\left [\begin {array}{ccc} 3 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end {array}\right ]\)

Eigenvectors

0.177

11996

\(\left [\begin {array}{cccc} 1 & 0 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end {array}\right ]\)

Eigenvectors

0.206

11997

\(\left [\begin {array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.204

11998

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.171

11999

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.181

12000

\(\left [\begin {array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

0.148