2.2.113 Problems 11201 to 11300

Table 2.239: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

11201

\begin{align*} \left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.263

11202

\begin{align*} 2 y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

0.854

11203

\begin{align*} \left (2+x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.697

11204

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.228

11205

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.262

11206

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.628

11207

\begin{align*} x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.641

11208

\begin{align*} 2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.208

11209

\begin{align*} 2 y^{\prime \prime } x -\left (2 x +3\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Laguerre]

0.637

11210

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.219

11211

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.088

11212

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.089

11213

\begin{align*} y^{\prime \prime } x +\left (x -6\right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.975

11214

\begin{align*} x^{4} y^{\prime \prime }+\lambda y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.437

11215

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.967

11216

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.102

11217

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.963

11218

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.526

11219

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

11220

\begin{align*} 16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.541

11221

\begin{align*} y x -x^{2} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.209

11222

\begin{align*} y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[_Laguerre]

0.592

11223

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.897

11224

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.225

11225

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.092

11226

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y&=0 \\ \end{align*}

[_Gegenbauer]

0.292

11227

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.095

11228

\begin{align*} y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.152

11229

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

0.183

11230

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+4 y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.115

11231

\begin{align*} y^{\prime \prime } x +\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.093

11232

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.103

11233

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.153

11234

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}

[_Jacobi]

0.298

11235

\begin{align*} 4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.222

11236

\begin{align*} 2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.255

11237

\begin{align*} 3 t \left (1+t \right ) y^{\prime \prime }+y^{\prime } t -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.243

11238

\begin{align*} x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.186

11239

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.102

11240

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.146

11241

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

0.591

11242

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.524

11243

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.280

11244

\begin{align*} 2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.620

11245

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.102

11246

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.101

11247

\begin{align*} u^{\prime \prime }+2 u^{\prime }+u&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.093

11248

\begin{align*} u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.102

11249

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.147

11250

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.097

11251

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.146

11252

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.574

11253

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.516

11254

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.520

11255

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.528

11256

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.518

11257

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.517

11258

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.508

11259

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.512

11260

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

11261

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.508

11262

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.520

11263

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.084

11264

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.172

11265

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.601

11266

\begin{align*} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.783

11267

\begin{align*} y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.638

11268

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

11269

\begin{align*} 2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.202

11270

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.091

11271

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

11272

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.940

11273

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.100

11274

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.523

11275

\begin{align*} y^{\prime \prime }&=\left (x^{2}+3\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.894

11276

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.087

11277

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.092

11278

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

11279

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.069

11280

\begin{align*} y^{\prime \prime }&=\frac {2 y}{x^{2}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.126

11281

\begin{align*} y^{\prime \prime }&=\frac {6 y}{x^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.138

11282

\begin{align*} y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.836

11283

\begin{align*} y^{\prime \prime }&=\frac {20 y}{x^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.132

11284

\begin{align*} y^{\prime \prime }&=\frac {12 y}{x^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.136

11285

\begin{align*} y^{\prime \prime }-\frac {y}{4 x^{2}}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.220

11286

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.142

11287

\begin{align*} y^{\prime \prime }+\frac {y}{x^{2}}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.190

11288

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.967

11289

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.183

11290

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.634

11291

\begin{align*} y^{\prime \prime }&=\frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.085

11292

\begin{align*} y^{\prime \prime }&=\left (\frac {6}{x^{2}}-1\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.970

11293

\begin{align*} y^{\prime \prime }&=\left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.920

11294

\begin{align*} y^{\prime \prime }&=\left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.162

11295

\begin{align*} y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.656

11296

\begin{align*} y^{\prime \prime }&=-\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

166.796

11297

\begin{align*} y^{\prime \prime }&=-\frac {y}{4 x^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.174

11298

\begin{align*} y^{\prime \prime }&=\left (x^{2}+3\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.851

11299

\begin{align*} x^{2} y^{\prime \prime }&=2 y \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.125

11300

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.088