2.2.120 Problems 11901 to 12000

Table 2.241: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11901

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \]

[_Riccati]

15.294

11902

\[ {}\sin \left (2 x \right )^{n +1} y^{\prime } = a y^{2} \sin \left (x \right )^{2 n}+b \cos \left (x \right )^{2 n} \]

[_Riccati]

337.657

11903

\[ {}y^{\prime } = y^{2}-y \tan \left (x \right )+a \left (-a +1\right ) \cot \left (x \right )^{2} \]

[_Riccati]

7.367

11904

\[ {}y^{\prime } = y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \]

[_Riccati]

35.647

11905

\[ {}y^{\prime } = y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m} \]

[_Riccati]

35.384

11906

\[ {}y^{\prime } = y^{2}-2 \lambda ^{2} \tan \left (x \right )^{2}-2 \lambda ^{2} \cot \left (\lambda x \right )^{2} \]

[_Riccati]

112.496

11907

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda +2 a b +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}+b \left (\lambda -b \right ) \cot \left (\lambda x \right )^{2} \]

[_Riccati]

16.823

11908

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \]

[_Riccati]

35.443

11909

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \sin \left (\lambda x \right ) y-a \tan \left (\lambda x \right ) \]

[_Riccati]

12.625

11910

\[ {}y^{\prime } = y^{2}+\lambda \arcsin \left (x \right )^{n} y-a^{2}+a \lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

3.738

11911

\[ {}y^{\prime } = y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

6.658

11912

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

53.296

11913

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

9.209

11914

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arcsin \left (x \right )^{n} y+b m \,x^{m -1} \]

[_Riccati]

27.263

11915

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \left (x \right )^{n} \]

[_Riccati]

37.320

11916

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

32.895

11917

\[ {}x y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \]

[_Riccati]

24.658

11918

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arcsin \left (x \right )^{m}-n y \]

[_Riccati]

111.743

11919

\[ {}y^{\prime } = y^{2}+\lambda \arccos \left (x \right )^{n} y-a^{2}+a \lambda \arccos \left (x \right )^{n} \]

[_Riccati]

7.465

11920

\[ {}y^{\prime } = y^{2}+\lambda x \arccos \left (x \right )^{n} y+\lambda \arccos \left (x \right )^{n} \]

[_Riccati]

15.698

11921

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arccos \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

56.122

11922

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arccos \left (x \right )^{n} \]

[_Riccati]

13.747

11923

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1} \]

[_Riccati]

64.049

11924

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n} \]

[_Riccati]

47.568

11925

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

43.085

11926

\[ {}x y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n} \]

[_Riccati]

83.115

11927

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arccos \left (x \right )^{m}-n y \]

[_Riccati]

156.483

11928

\[ {}y^{\prime } = y^{2}+\lambda \arctan \left (x \right )^{n} y-a^{2}+a \lambda \arctan \left (x \right )^{n} \]

[_Riccati]

4.825

11929

\[ {}y^{\prime } = y^{2}+\lambda x \arctan \left (x \right )^{n} y+\lambda \arctan \left (x \right )^{n} \]

[_Riccati]

6.860

11930

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

39.800

11931

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n} \]

[_Riccati]

7.785

11932

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arctan \left (x \right )^{n} y+b m \,x^{m -1} \]

[_Riccati]

49.465

11933

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arctan \left (x \right )^{n} \]

[_Riccati]

76.519

11934

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

90.319

11935

\[ {}x y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arctan \left (x \right )^{n} \]

[_Riccati]

36.539

11936

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arctan \left (x \right )^{m}-n y \]

[_Riccati]

105.393

11937

\[ {}y^{\prime } = y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

5.303

11938

\[ {}y^{\prime } = y^{2}+\lambda x \operatorname {arccot}\left (x \right )^{n} y+\lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

6.007

11939

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

41.211

11940

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11.346

11941

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}-b \lambda \,x^{m} \operatorname {arccot}\left (x \right )^{n} y+b m \,x^{m -1} \]

[_Riccati]

64.713

11942

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

77.639

11943

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

112.058

11944

\[ {}x y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

36.702

11945

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \operatorname {arccot}\left (x \right )^{m}-n y \]

[_Riccati]

294.594

11946

\[ {}y^{\prime } = y^{2}+f \left (x \right ) y-a^{2}-a f \left (x \right ) \]

[_Riccati]

1.917

11947

\[ {}y^{\prime } = y^{2} f \left (x \right )-a y-a b -b^{2} f \left (x \right ) \]

[_Riccati]

2.508

11948

\[ {}y^{\prime } = y^{2}+x f \left (x \right ) y+f \left (x \right ) \]

[_Riccati]

1.868

11949

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1} \]

[_Riccati]

3.329

11950

\[ {}y^{\prime } = y^{2} f \left (x \right )+a n \,x^{n -1}-a^{2} x^{2 n} f \left (x \right ) \]

[_Riccati]

6.354

11951

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \]

[_Riccati]

3.131

11952

\[ {}x y^{\prime } = y^{2} f \left (x \right )+n y+a \,x^{2 n} f \left (x \right ) \]

[_Riccati]

2.352

11953

\[ {}x y^{\prime } = x^{2 n} f \left (x \right ) y^{2}+\left (a \,x^{n} f \left (x \right )-n \right ) y+b f \left (x \right ) \]

[_Riccati]

15.647

11954

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y-a^{2} f \left (x \right )-a g \left (x \right ) \]

[_Riccati]

2.537

11955

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a n \,x^{n -1}-a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right ) \]

[_Riccati]

147.229

11956

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} g \left (x \right ) y+a n \,x^{n -1}+a^{2} x^{2 n} \left (g \left (x \right )-f \left (x \right )\right ) \]

[_Riccati]

188.577

11957

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+\lambda f \left (x \right ) \]

[_Riccati]

3.089

11958

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

4.497

11959

\[ {}y^{\prime } = y^{2} f \left (x \right )+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

6.327

11960

\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

2.134

11961

\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) \left (a \,{\mathrm e}^{\lambda x}+b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

5.290

11962

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (a f \left (x \right )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \]

[_Riccati]

3.385

11963

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

13.043

11964

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \]

[_Riccati]

20.601

11965

\[ {}y^{\prime } = y^{2} f \left (x \right )+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}} \]

[_Riccati]

6.542

11966

\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda x y+a f \left (x \right ) {\mathrm e}^{\lambda x} \]

[_Riccati]

4.839

11967

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \]

[_Riccati]

299.589

11968

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \]

[_Riccati]

276.190

11969

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \]

[_Riccati]

37.296

11970

\[ {}x y^{\prime } = y^{2} f \left (x \right )+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \]

[_Riccati]

3.880

11971

\[ {}x y^{\prime } = f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.924

11972

\[ {}y^{\prime } = y^{2} f \left (x \right )-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \]

[_Riccati]

3.691

11973

\[ {}y^{\prime } = -a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \]

[_Riccati]

3.527

11974

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \]

[_Riccati]

11.432

11975

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \]

[_Riccati]

52.010

11976

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \]

[_Riccati]

52.931

11977

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \]

[_Riccati]

362.875

11978

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \]

[_Riccati]

378.316

11979

\[ {}y^{\prime } = y^{2}-f \left (x \right )^{2}+f^{\prime }\left (x \right ) \]

[_Riccati]

1.414

11980

\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \]

[_Riccati]

1.668

11981

\[ {}y^{\prime } = -f^{\prime }\left (x \right ) y^{2}+f \left (x \right ) g \left (x \right ) y-g \left (x \right ) \]

[_Riccati]

1.954

11982

\[ {}y^{\prime } = g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.826

11983

\[ {}y^{\prime } = \frac {f^{\prime }\left (x \right ) y^{2}}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

2.913

11984

\[ {}f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right ) = 0 \]

[_Riccati]

3.311

11985

\[ {}y^{\prime } = f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

2.366

11986

\[ {}y^{\prime } = y^{2} f \left (x \right )+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \]

[_Riccati]

0.984

11987

\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

1.037

11988

\[ {}y^{\prime } = y^{2}+a^{2} f \left (a x +b \right ) \]

[_Riccati]

1.328

11989

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \]

[_Riccati]

1.667

11990

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \]

[_Riccati]

4.072

11991

\[ {}x^{2} y^{\prime } = x^{4} f \left (x \right ) y^{2}+1 \]

[_Riccati]

2.621

11992

\[ {}x^{2} y^{\prime } = x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \]

[_Riccati]

25.201

11993

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+h \left (x \right ) \]

[_Riccati]

2.431

11994

\[ {}y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4} \]

[_Riccati]

3.115

11995

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{4}+\frac {{\mathrm e}^{2 \lambda x} f \left (\frac {a \,{\mathrm e}^{\lambda x}+b}{c \,{\mathrm e}^{\lambda x}+d}\right )}{\left (c \,{\mathrm e}^{\lambda x}+d \right )^{4}} \]

[_Riccati]

46.377

11996

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\coth \left (\lambda x \right )\right )}{\sinh \left (\lambda x \right )^{4}} \]

[_Riccati]

38.546

11997

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\tanh \left (\lambda x \right )\right )}{\cosh \left (\lambda x \right )^{4}} \]

[_Riccati]

20.173

11998

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \]

[_Riccati]

2.487

11999

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\cot \left (\lambda x \right )\right )}{\sin \left (\lambda x \right )^{4}} \]

[_Riccati]

106.207

12000

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \]

[_Riccati]

26.644