2.2.120 Problems 11901 to 12000

Table 2.241: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11901

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.560

11902

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (x +k \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.270

11903

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-k x +x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.068

11904

\[ {}x^{3} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.773

11905

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.997

11906

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.812

11907

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.866

11908

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.911

11909

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{3}+a b x -x^{2}+b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.964

11910

\[ {}x^{3} y^{\prime \prime }+x \left (a \,x^{n}+b \right ) y^{\prime }-\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.758

11911

\[ {}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4.110

11912

\[ {}x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.454

11913

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (c \,x^{2}+\left (a \lambda +2 b \right ) x +b \lambda \right ) y^{\prime }+\lambda \left (c -2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.404

11914

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.991

11915

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (a \left (2-n -m \right ) x^{2}-b \left (n +m \right ) x \right ) y^{\prime }+\left (a m \left (n -1\right ) x +b n \left (m +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.534

11916

\[ {}x^{2} \left (x +a_{2} \right ) y^{\prime \prime }+x \left (b_{1} x +a_{1} \right ) y^{\prime }+\left (b_{0} x +a_{0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.298

11917

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }+\left (\beta -2 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.329

11918

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }-\left (\alpha x +2 b -\beta \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.317

11919

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (-2 a \,x^{2}-\left (b +1\right ) x +k \right ) y^{\prime }+2 \left (a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.717

11920

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (k -1\right ) \left (\left (-a k +n \right ) x +m -b k \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.400

11921

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\left (m -a \right ) x^{2}+\left (2 c m -1\right ) x -c \right ) y^{\prime }+\left (-2 m x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

501.837

11922

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

53.937

11923

\[ {}\left (a \,x^{3}+x^{2}+b \right ) y^{\prime \prime }+a^{2} x \left (x^{2}-b \right ) y^{\prime }-a^{3} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10.102

11924

\[ {}2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \,x^{2}-c \right ) y^{\prime }+\lambda \,x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

110.750

11925

\[ {}x \left (a \,x^{2}+b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (n x +m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.069

11926

\[ {}x \left (x -1\right ) \left (x -a \right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +d \right )-a \right ) x +a \gamma \right ) y^{\prime }+\left (\alpha \beta x -q \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.295

11927

\[ {}\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }-\left (-\lambda ^{2}+x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

172.168

11928

\[ {}2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

126.289

11929

\[ {}2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+3 \left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\left (6 a x +2 b +\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

107.410

11930

\[ {}\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\left (\alpha \gamma +\beta \right ) x +\beta \lambda \right ) y^{\prime }-\left (\alpha x +\beta \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

573.506

11931

\[ {}\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

729.694

11932

\[ {}2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \left (2-k \right ) x^{2}+b \left (1-k \right ) x -c k \right ) y^{\prime }+\lambda \,x^{k +1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.066

11933

\[ {}x^{4} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

2.913

11934

\[ {}x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.421

11935

\[ {}x^{4} y^{\prime \prime }-\left (a +b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) x +a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.516

11936

\[ {}x^{4} y^{\prime \prime }+2 x^{2} \left (x +a \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.615

11937

\[ {}x^{4} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a \,x^{n -1}+a b \,x^{n -2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.110

11938

\[ {}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.792

11939

\[ {}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = c \,x^{2} \left (x -a \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.138

11940

\[ {}a \,x^{2} \left (x -1\right )^{2} y^{\prime \prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

11941

\[ {}x^{2} \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) x y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.464

11942

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+a y = 0 \]

[_Halm]

1.447

11943

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.503

11944

\[ {}\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_Emden, _Fowler]]

1.637

11945

\[ {}\left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.788

11946

\[ {}4 \left (x^{2}+1\right )^{2} y^{\prime \prime }+\left (a \,x^{2}+a -3\right ) y = 0 \]

[_Halm]

1.494

11947

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.199

11948

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }-\left (\nu \left (\nu +1\right ) \left (x^{2}-1\right )+n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.887

11949

\[ {}\left (-x^{2}+1\right )^{2} y^{\prime \prime }-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (\nu \left (\nu +1\right ) \left (-x^{2}+1\right )-\mu ^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.871

11950

\[ {}a \left (x^{2}-1\right )^{2} y^{\prime \prime }+b x \left (x^{2}-1\right ) y^{\prime }+\left (c \,x^{2}+d x +e \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.227

11951

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.188

11952

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.158

11953

\[ {}\left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-\left (b \,x^{n +1}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.820

11954

\[ {}\left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.950

11955

\[ {}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }-c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.536

11956

\[ {}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }+\left (x -a \right ) \left (x -b \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.071

11957

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+A y = 0 \]

[[_Emden, _Fowler]]

3.432

11958

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.852

11959

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+\left (\left (x^{2}+1\right ) \left (a^{2} x^{2}-\lambda \right )+m^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.870

11960

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.972

11961

\[ {}x^{6} y^{\prime \prime }-x^{5} y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

2.715

11962

\[ {}x^{6} y^{\prime \prime }+\left (3 x^{2}+a \right ) x^{3} y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.941

11963

\[ {}x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.256

11964

\[ {}x^{n} y^{\prime \prime }+a x y^{\prime }-\left (b^{2} x^{n}+2 b \,x^{n -1}+a b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.119

11965

\[ {}x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.119

11966

\[ {}x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (a -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.112

11967

\[ {}x^{n} y^{\prime \prime }+\left (2 x^{n -1}+a \,x^{2}+b x \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.999

11968

\[ {}x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.824

11969

\[ {}x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.188

11970

\[ {}x^{n} y^{\prime \prime }+\left (a \,x^{n +m}+1\right ) y^{\prime }+a \,x^{m} \left (1+m \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

11971

\[ {}\left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.351

11972

\[ {}\left (a \,x^{n}+b x +c \right ) y^{\prime \prime } = a n \left (n -1\right ) x^{n -2} y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.852

11973

\[ {}x \left (x^{n}+1\right ) y^{\prime \prime }+\left (\left (a -b \right ) x^{n}+a -n \right ) y^{\prime }+b \left (1-a \right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.409

11974

\[ {}x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.346

11975

\[ {}x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a^{2} \left (n +1\right ) x^{2 n}+n -1\right ) y^{\prime }-\nu \left (\nu +1\right ) a^{2} n^{2} x^{2 n} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.397

11976

\[ {}x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.625

11977

\[ {}\left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{n -2} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.263

11978

\[ {}\left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.116

11979

\[ {}\left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{n -2} \left (b \,x^{m +1}+a n -a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.715

11980

\[ {}\left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-a n \,x^{n -1}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.921

11981

\[ {}x^{2} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (n +1\right ) x \left (a^{2} x^{2 n}-b^{2}\right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.026

11982

\[ {}\left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-b n +\beta \right ) x^{n -2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.967

11983

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.320

11984

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.990

11985

\[ {}2 \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+a n \,x^{n -1} b m \,x^{m -1} y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.366

11986

\[ {}\left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.303

11987

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.684

11988

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.698

11989

\[ {}y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.195

11990

\[ {}y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.206

11991

\[ {}y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.195

11992

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.239

11993

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.264

11994

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.329

11995

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.116

11996

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.977

11997

\[ {}y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.351

11998

\[ {}y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.439

11999

\[ {}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.988

12000

\[ {}y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.356