2.2.120 Problems 11901 to 12000

Table 2.253: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

11901

\begin{align*} y^{\prime }&=\frac {\left (1+y\right ) \left (\left (y-\ln \left (1+y\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \\ \end{align*}

[‘y=_G(x,y’)‘]

19.647

11902

\begin{align*} y^{\prime }&=\frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

9.166

11903

\begin{align*} y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

9.624

11904

\begin{align*} y^{\prime }&=\frac {1}{y+\sqrt {x}} \\ \end{align*}

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

23.020

11905

\begin{align*} y^{\prime }&=\frac {1}{y+2+\sqrt {1+3 x}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

69.144

11906

\begin{align*} y^{\prime }&=\frac {x^{2}}{y+x^{{3}/{2}}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

73.383

11907

\begin{align*} y^{\prime }&=\frac {x^{{5}/{3}}}{y+x^{{4}/{3}}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

31.570

11908

\begin{align*} y^{\prime }&=\frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.145

11909

\begin{align*} y^{\prime }&=\frac {x}{y+\sqrt {x^{2}+1}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

71.332

11910

\begin{align*} y^{\prime }&=\frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \\ \end{align*}

[_Riccati]

4.322

11911

\begin{align*} y^{\prime }&=\frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

20.008

11912

\begin{align*} y^{\prime }&=\frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \\ \end{align*}

[_Riccati]

82.506

11913

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

14.195

11914

\begin{align*} y^{\prime }&=\frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18.325

11915

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x}}{{\mathrm e}^{-x} y+1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

14.105

11916

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

34.015

11917

\begin{align*} y^{\prime }&=\frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

55.192

11918

\begin{align*} y^{\prime }&=\frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

18.048

11919

\begin{align*} y^{\prime }&=\left (-\ln \left (y\right )+x^{2}\right ) y \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.948

11920

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.026

11921

\begin{align*} y^{\prime }&=-\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \\ \end{align*}

[‘x=_G(y,y’)‘]

16.421

11922

\begin{align*} y^{\prime }&=\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \\ \end{align*}

[‘y=_G(x,y’)‘]

16.798

11923

\begin{align*} y^{\prime }&=\frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \\ \end{align*}

[‘y=_G(x,y’)‘]

21.949

11924

\begin{align*} y^{\prime }&=\frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

34.161

11925

\begin{align*} y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{2}}{y} \\ \end{align*}

[_rational]

9.513

11926

\begin{align*} y^{\prime }&=\frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19.820

11927

\begin{align*} y^{\prime }&=-\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

31.865

11928

\begin{align*} y^{\prime }&=\left (-\ln \left (y\right )+x \right ) y \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

7.435

11929

\begin{align*} y^{\prime }&=\frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13.764

11930

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.868

11931

\begin{align*} y^{\prime }&=-\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

24.016

11932

\begin{align*} y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19.654

11933

\begin{align*} y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

20.054

11934

\begin{align*} y^{\prime }&=\frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.656

11935

\begin{align*} y^{\prime }&=\frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

59.503

11936

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19.248

11937

\begin{align*} y^{\prime }&=-\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13.212

11938

\begin{align*} y^{\prime }&=\frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

22.694

11939

\begin{align*} y^{\prime }&=\frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10.260

11940

\begin{align*} y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19.479

11941

\begin{align*} y^{\prime }&=-\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

11.886

11942

\begin{align*} y^{\prime }&=-\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19.536

11943

\begin{align*} y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

20.019

11944

\begin{align*} y^{\prime }&=-\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

18.896

11945

\begin{align*} y^{\prime }&=\frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

16.725

11946

\begin{align*} y^{\prime }&=\frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

37.138

11947

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19.530

11948

\begin{align*} y^{\prime }&=-\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.498

11949

\begin{align*} y^{\prime }&=\left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.207

11950

\begin{align*} y^{\prime }&=\frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

25.434

11951

\begin{align*} y^{\prime }&=\frac {y^{3} {\mathrm e}^{-2 x}}{{\mathrm e}^{-x} y+1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

21.079

11952

\begin{align*} y^{\prime }&=\frac {\left (-2 y^{{3}/{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14.421

11953

\begin{align*} y^{\prime }&=\frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

20.082

11954

\begin{align*} y^{\prime }&=\frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \\ \end{align*}

[_rational]

9.722

11955

\begin{align*} y^{\prime }&=\frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

73.390

11956

\begin{align*} y^{\prime }&=\frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \\ \end{align*}

[‘y=_G(x,y’)‘]

5.900

11957

\begin{align*} y^{\prime }&=-\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13.627

11958

\begin{align*} y^{\prime }&=\frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-y^{2} x^{2}-x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

8.430

11959

\begin{align*} y^{\prime }&=\frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16.809

11960

\begin{align*} y^{\prime }&=\frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-y^{2} x^{2}-x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

11.033

11961

\begin{align*} y^{\prime }&=\frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

22.589

11962

\begin{align*} y^{\prime }&=\frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 y^{2} x^{2}+7 x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

12.109

11963

\begin{align*} y^{\prime }&=\frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

12.138

11964

\begin{align*} y^{\prime }&=\frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+b \,x^{4}+b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+a \,x^{2} y^{2}+a x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

15.701

11965

\begin{align*} y^{\prime }&=\frac {2 a}{x \left (-y x +2 a x y^{2}-8 a^{2}\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7.867

11966

\begin{align*} y^{\prime }&=\frac {y \left (-1+\ln \left (x \left (x +1\right )\right ) y x^{4}-\ln \left (x \left (x +1\right )\right ) x^{3}\right )}{x} \\ \end{align*}

[_Bernoulli]

18.140

11967

\begin{align*} y^{\prime }&=\frac {y+x^{2} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.950

11968

\begin{align*} y^{\prime }&=\frac {y+\ln \left (\left (x -1\right ) \left (x +1\right )\right ) x^{3}+7 \ln \left (\left (x -1\right ) \left (x +1\right )\right ) x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

11.201

11969

\begin{align*} y^{\prime }&=\frac {y^{3} x \,{\mathrm e}^{2 x^{2}}}{y \,{\mathrm e}^{x^{2}}+1} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

21.599

11970

\begin{align*} y^{\prime }&=\frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

15.580

11971

\begin{align*} y^{\prime }&=\frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

9.714

11972

\begin{align*} y^{\prime }&=\frac {y x -y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

10.340

11973

\begin{align*} y^{\prime }&=\frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4 x +4} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

20.767

11974

\begin{align*} y^{\prime }&=\frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.005

11975

\begin{align*} y^{\prime }&=\frac {y+x^{3} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.336

11976

\begin{align*} y^{\prime }&=\left (1+y^{2} {\mathrm e}^{-2 b x}+y^{3} {\mathrm e}^{-3 b x}\right ) {\mathrm e}^{b x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Abel]

8.870

11977

\begin{align*} y^{\prime }&=\frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17.932

11978

\begin{align*} y^{\prime }&=\frac {y \ln \left (x -1\right )+x^{4}+x^{3}+y^{2} x^{2}+x y^{2}}{\ln \left (x -1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

10.927

11979

\begin{align*} y^{\prime }&=\frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

11.385

11980

\begin{align*} y^{\prime }&=\left (1+y^{2} {\mathrm e}^{-\frac {4 x}{3}}+y^{3} {\mathrm e}^{-2 x}\right ) {\mathrm e}^{\frac {2 x}{3}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Abel]

8.265

11981

\begin{align*} y^{\prime }&=\left (1+y^{2} {\mathrm e}^{-2 x}+y^{3} {\mathrm e}^{-3 x}\right ) {\mathrm e}^{x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Abel]

7.928

11982

\begin{align*} y^{\prime }&=\frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3 x +3} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

22.451

11983

\begin{align*} y^{\prime }&=\frac {1}{x \left (x y^{2}+1+x \right ) y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.309

11984

\begin{align*} y^{\prime }&=\frac {2 x \,{\mathrm e}^{x}-2 x -\ln \left (x \right )-1+x^{4} \ln \left (x \right )+x^{4}-2 y \ln \left (x \right ) x^{2}-2 x^{2} y+y^{2} \ln \left (x \right )+y^{2}}{{\mathrm e}^{x}-1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

23.837

11985

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{x} y+y x -x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (x -{\mathrm e}^{x}\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

11.422

11986

\begin{align*} y^{\prime }&=\frac {y \left (1-x +y \ln \left (x \right ) x^{2}+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \\ \end{align*}

[_Bernoulli]

14.224

11987

\begin{align*} y^{\prime }&=\frac {x y \ln \left (x \right )-y+2 x^{5} b +2 a \,x^{3} y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

13.962

11988

\begin{align*} y^{\prime }&=\frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.044

11989

\begin{align*} y^{\prime }&=-\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right ) x \left (1+y\right )^{2}}{8} \\ \end{align*}

[‘y=_G(x,y’)‘]

67.592

11990

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right )^{2} x \left (1+y\right )^{2}}{16} \\ \end{align*}

[‘x=_G(y,y’)‘]

58.883

11991

\begin{align*} y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \\ \end{align*}

[_rational]

11.059

11992

\begin{align*} y^{\prime }&=\frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (x +1\right ) y} \\ \end{align*}

[‘y=_G(x,y’)‘]

43.423

11993

\begin{align*} y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

57.256

11994

\begin{align*} y^{\prime }&=\frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

21.626

11995

\begin{align*} y^{\prime }&=\frac {-a b y+b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

23.245

11996

\begin{align*} y^{\prime }&=-\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y \ln \left (x \right ) x^{2}+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \\ \end{align*}

[_Bernoulli]

17.096

11997

\begin{align*} y^{\prime }&=\frac {-x^{2}+x +2+2 x^{3} \sqrt {x^{2}-4 x +4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

23.845

11998

\begin{align*} y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \\ \end{align*}

[_rational]

59.937

11999

\begin{align*} y^{\prime }&=-\frac {x^{2}+x +a x +a -2 \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

14.371

12000

\begin{align*} y^{\prime }&=\left (1+y^{2} {\mathrm e}^{2 x^{2}}+y^{3} {\mathrm e}^{3 x^{2}}\right ) {\mathrm e}^{-x^{2}} x \\ \end{align*}

[_Abel]

10.534