# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.734 |
|
\[
{}y^{\prime \prime }+12 y = 7 y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.721 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.744 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.434 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.912 |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.724 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.516 |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.063 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.063 |
|
\[
{}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.067 |
|
\[
{}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.063 |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.077 |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.065 |
|
\[
{}y^{\prime \prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.073 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.001 |
|
\[
{}s^{\prime \prime }-a^{2} s = 1+t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.070 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.404 |
|
\[
{}y^{\prime \prime }-y = 5 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.898 |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.827 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.890 |
|
\[
{}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.233 |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2-6 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.397 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
73.203 |
|
\[
{}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.661 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.106 |
|
\[
{}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.151 |
|
\[
{}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.037 |
|
\[
{}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.131 |
|
\[
{}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.869 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.256 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.197 |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.080 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y+1 \\ y^{\prime }=x+1 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.542 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.392 |
|
\[
{}\left [\begin {array}{c} 4 x^{\prime }-y^{\prime }+3 x=\sin \left (t \right ) \\ x^{\prime }+y=\cos \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.577 |
|
\[
{}y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
2.856 |
|
\[
{}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0
\] |
[_separable] |
✓ |
2.079 |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
0.447 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.159 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }-y x -\alpha = 0
\] |
[_linear] |
✓ |
1.748 |
|
\[
{}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
5.075 |
|
\[
{}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.669 |
|
\[
{}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0
\] |
[_Bernoulli] |
✓ |
1.824 |
|
\[
{}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.086 |
|
\[
{}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
3.062 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-3 y \\ y^{\prime }=5 x+6 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.599 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x-10 y \\ y^{\prime }=x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.391 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=12 x+18 y \\ y^{\prime }=-8 x-12 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.254 |
|
\[
{}y^{\prime } = y^{2}+x
\] |
[[_Riccati, _special]] |
✓ |
1.208 |
|
\[
{}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x}
\] |
[_linear] |
✓ |
1.122 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=-x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.403 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-5 y \\ y^{\prime }=x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.368 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.480 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x+2 y \\ y^{\prime }=3 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.499 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=2 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.491 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=3 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.294 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.582 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.269 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=2 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.283 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.281 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.274 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=2 x-4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.479 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.205 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=0 \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.218 |
|
\[
{}x^{\prime \prime }+x-x^{3} = 0
\] |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
2.241 |
|
\[
{}x^{\prime \prime }+x+x^{3} = 0
\] |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
2.588 |
|
\[
{}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
0.467 |
|
\[
{}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
0.461 |
|
\[
{}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
2.413 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-5 y \\ y^{\prime }=x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.372 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.145 |
|
\[
{}-y+y^{\prime } x = 0
\] |
[_separable] |
✓ |
1.076 |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.048 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.705 |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.790 |
|
\[
{}y^{\prime }+\frac {1}{2 y} = 0
\] |
[_quadrature] |
✓ |
0.445 |
|
\[
{}y^{\prime }-\frac {y}{x} = 1
\] |
[_linear] |
✓ |
1.050 |
|
\[
{}y^{\prime }-2 \sqrt {{| y|}} = 0
\] |
[_quadrature] |
✓ |
1.316 |
|
\[
{}x^{2} y^{\prime }+2 y x = 0
\] |
[_separable] |
✓ |
1.381 |
|
\[
{}y^{\prime }-y^{2} = 1
\] |
[_quadrature] |
✓ |
0.393 |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.987 |
|
\[
{}y^{\prime } x -\sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
0.309 |
|
\[
{}y^{\prime }+3 y = 0
\] |
[_quadrature] |
✓ |
0.552 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.717 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.732 |
|
\[
{}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.057 |
|
\[
{}2 y^{\prime } x -y = 0
\] |
[_separable] |
✓ |
1.467 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.685 |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.111 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.924 |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
0.501 |
|
\[
{}{y^{\prime }}^{2}-9 y x = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
0.480 |
|
\[
{}{y^{\prime }}^{2} = x^{6}
\] |
[_quadrature] |
✓ |
0.382 |
|
\[
{}y^{\prime }-2 y x = 0
\] |
[_separable] |
✓ |
1.041 |
|
\[
{}y^{\prime }+y = x^{2}+2 x -1
\] |
[[_linear, ‘class A‘]] |
✓ |
0.879 |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.716 |
|
\[
{}y^{\prime } = x \sqrt {y}
\] |
[_separable] |
✓ |
2.043 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.720 |
|
\[
{}y^{\prime } = 3 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
0.641 |
|