2.2.134 Problems 13301 to 13400

Table 2.269: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13301

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.329

13302

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+7 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.512

13303

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=7 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.552

13304

\(\left [\begin {array}{cc} 1 & 2 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.144

13305

\(\left [\begin {array}{cc} 3 & 2 \\ 6 & -1 \end {array}\right ]\)

Eigenvectors

0.157

13306

\(\left [\begin {array}{cc} 3 & 1 \\ 12 & 2 \end {array}\right ]\)

Eigenvectors

0.153

13307

\(\left [\begin {array}{cc} -2 & 7 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.146

13308

\(\left [\begin {array}{cc} 3 & 4 \\ 5 & 2 \end {array}\right ]\)

Eigenvectors

0.148

13309

\(\left [\begin {array}{cc} 3 & -5 \\ -4 & 2 \end {array}\right ]\)

Eigenvectors

0.147

13310

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end {array}\right ]\)

Eigenvectors

0.249

13311

\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & -6 & 6 \end {array}\right ]\)

Eigenvectors

0.254

13312

\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end {array}\right ]\)

Eigenvectors

0.269

13313

\(\left [\begin {array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.236

13314

\(\left [\begin {array}{ccc} 1 & 3 & -6 \\ 0 & 2 & 2 \\ 0 & -1 & 5 \end {array}\right ]\)

Eigenvectors

0.222

13315

\(\left [\begin {array}{ccc} -5 & -12 & 6 \\ 1 & 5 & -1 \\ -7 & -10 & 8 \end {array}\right ]\)

Eigenvectors

0.252

13316

\(\left [\begin {array}{ccc} -2 & 5 & 5 \\ -1 & 4 & 5 \\ 3 & -3 & 2 \end {array}\right ]\)

Eigenvectors

0.262

13317

\(\left [\begin {array}{ccc} -2 & 6 & -18 \\ 12 & -23 & 66 \\ 5 & -10 & 29 \end {array}\right ]\)

Eigenvectors

0.267

13318

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=2 x+3 y-4 z \\ z^{\prime }=4 x+y-4 z \end {array}\right ] \]

system_of_ODEs

0.546

13319

\[ {}\left [\begin {array}{c} x^{\prime }=x-y-z \\ y^{\prime }=x+3 y+z \\ z^{\prime }=-3 x-6 y+6 z \end {array}\right ] \]

system_of_ODEs

0.515

13320

\[ {}y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

0.345

13321

\[ {}y^{\prime }+y = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.360

13322

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.215

13323

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.263

13324

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

0.319

13325

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.325

13326

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

13327

\[ {}y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.280

13328

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 t \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

13329

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.296

13330

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.377

13331

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.335

13332

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

13333

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

13334

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.644

13335

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.372

13336

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.734

13337

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.584

13338

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.375

13339

\[ {}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 x^{\prime } t -6 x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.132

13340

\[ {}\left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.497

13341

\[ {}t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

13342

\[ {}t^{2} x^{\prime \prime }+3 x^{\prime } t +3 x = 0 \]

[[_Emden, _Fowler]]

2.460

13343

\[ {}\left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.737

13344

\[ {}t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.360

13345

\[ {}t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.529

13346

\[ {}t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

[[_Emden, _Fowler]]

0.884

13347

\[ {}\sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.680

13348

\[ {}\frac {\left (t +1\right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.211

13349

\[ {}t^{2} x^{\prime \prime }+x^{\prime } t +x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.297

13350

\[ {}\left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.969

13351

\[ {}x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0 \]

[_Lienard]

1.205

13352

\[ {}f \left (t \right ) x^{\prime \prime }+x g \left (t \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.141

13353

\[ {}x^{\prime \prime }+\left (t +1\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.583

13354

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.599

13355

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.581

13356

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.574

13357

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.729

13358

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.559

13359

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.572

13360

\[ {}2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.719

13361

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.358

13362

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.309

13363

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.320

13364

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+4 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.315

13365

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+5 y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.320

13366

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-4 y \\ y^{\prime }=2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.379

13367

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.479

13368

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+5 y \end {array}\right ] \]

system_of_ODEs

0.520

13369

\[ {}\left [\begin {array}{c} x^{\prime }=x+7 y \\ y^{\prime }=3 x+5 y \end {array}\right ] \]

system_of_ODEs

0.323

13370

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=3 x-y \end {array}\right ] \]

system_of_ODEs

0.317

13371

\[ {}\left [\begin {array}{c} x^{\prime }=a x+b y \\ y^{\prime }=c x+d y \end {array}\right ] \]

system_of_ODEs

0.687

13372

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-4 y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }=4 x+4 y-y \left (x^{2}+y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.055

13373

\[ {}\left [\begin {array}{c} x^{\prime }=y+\frac {x \left (1-x^{2}-y^{2}\right )}{\sqrt {x^{2}+y^{2}}} \\ y^{\prime }=-x+\frac {y \left (1-x^{2}-y^{2}\right )}{\sqrt {x^{2}+y^{2}}} \end {array}\right ] \]

system_of_ODEs

0.087

13374

\[ {}x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

0.534

13375

\[ {}x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

[[_2nd_order, _missing_x]]

0.583

13376

\[ {}x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

[[_2nd_order, _missing_x]]

0.615

13377

\[ {}x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

[[_2nd_order, _missing_x]]

0.552

13378

\[ {}x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3} = 0 \]

[[_2nd_order, _missing_x]]

0.507

13379

\[ {}\left [\begin {array}{c} x^{\prime }=x-x^{2} \\ y^{\prime }=2 y-y^{2} \end {array}\right ] \]

system_of_ODEs

0.052

13380

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

0.361

13381

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

0.311

13382

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

0.325

13383

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

0.331

13384

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

0.428

13385

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

0.685

13386

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

0.465

13387

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

0.671

13388

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

0.551

13389

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.619

13390

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

0.897

13391

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

1.869

13392

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

5.399

13393

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

219.470

13394

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

1.382

13395

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

1.454

13396

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

3.577

13397

\[ {}x^{\prime } = t^{2} x \]

[_separable]

1.168

13398

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

0.921

13399

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}} y^{2} \]

[_separable]

1.473

13400

\[ {}x^{\prime }+p x = q \]

[_quadrature]

0.737