2.2.129 Problems 12801 to 12900

Table 2.271: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

12801

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.038

12802

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16}&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.049

12803

\begin{align*} x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-y^{\prime \prime } x +y^{\prime }-a^{4} x^{3} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.042

12804

\begin{align*} 6 y^{\prime \prime } x +6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.783

12805

\begin{align*} x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (n +3\right ) \left (-2+n \right )\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

12806

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 x^{4} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.100

12807

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

12808

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.048

12809

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.054

12810

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.054

12811

\begin{align*} 12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.124

12812

\begin{align*} a y+12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.153

12813

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 x^{2 c} b^{2} c^{2}+6 \left (-1+a \right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (-1+a \right )-1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.099

12814

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (-1+a \right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.094

12815

\begin{align*} \nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16}&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.060

12816

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.060

12817

\begin{align*} \left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+{\mathrm e}^{x} y-\frac {1}{x^{5}}&=0 \\ \end{align*}

[[_high_order, _fully, _exact, _linear]]

0.284

12818

\begin{align*} y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.086

12819

\begin{align*} y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.067

12820

\begin{align*} f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right )&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.063

12821

\begin{align*} f y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.033

12822

\begin{align*} y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right )&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.040

12823

\begin{align*} y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right )&=0 \\ \end{align*}

[[_high_order, _missing_y]]

1.458

12824

\begin{align*} y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right )&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

3.109

12825

\begin{align*} y^{\left (5\right )}-a x y-b&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.024

12826

\begin{align*} y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

12827

\begin{align*} y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.092

12828

\begin{align*} x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.028

12829

\begin{align*} x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.200

12830

\begin{align*} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.054

12831

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-a y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.023

12832

\begin{align*} x^{10} y^{\left (5\right )}-a y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.038

12833

\begin{align*} x^{{5}/{2}} y^{\left (5\right )}-a y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.030

12834

\begin{align*} \left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.037

12835

\begin{align*} y^{\prime \prime }-y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.798

12836

\begin{align*} y^{\prime \prime }-6 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.683

12837

\begin{align*} y^{\prime \prime }-6 y^{2}-x&=0 \\ \end{align*}

[[_Painleve, ‘1st‘]]

0.227

12838

\begin{align*} y^{\prime \prime }-6 y^{2}+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.699

12839

\begin{align*} y^{\prime \prime }+a y^{2}+b x +c&=0 \\ \end{align*}

[NONE]

0.239

12840

\begin{align*} y^{\prime \prime }-2 y^{3}-y x +a&=0 \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.243

12841

\begin{align*} y^{\prime \prime }-a y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.689

12842

\begin{align*} y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b&=0 \\ \end{align*}

[NONE]

0.263

12843

\begin{align*} y^{\prime \prime }+d +b x y+c y+a y^{3}&=0 \\ \end{align*}

[NONE]

0.276

12844

\begin{align*} y^{\prime \prime }+d +b y^{2}+c y+a y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.247

12845

\begin{align*} y^{\prime \prime }+a \,x^{r} y^{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.247

12846

\begin{align*} y^{\prime \prime }+6 a^{10} y^{11}-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.833

12847

\begin{align*} y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}}&=0 \\ \end{align*}

[NONE]

0.648

12848

\begin{align*} y^{\prime \prime }-{\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.757

12849

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

12850

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.625

12851

\begin{align*} a \sin \left (y\right )+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

38.541

12852

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right )&=0 \\ \end{align*}

[NONE]

0.930

12853

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right )&=0 \\ \end{align*}

[NONE]

0.729

12854

\begin{align*} y^{\prime \prime }&=\frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.810

12855

\begin{align*} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.436

12856

\begin{align*} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

99.761

12857

\begin{align*} y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

86.986

12858

\begin{align*} y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.622

12859

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n}&=0 \\ \end{align*}

[NONE]

0.337

12860

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.835

12861

\begin{align*} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.932

12862

\begin{align*} -y^{3}+y y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

24.878

12863

\begin{align*} y^{\prime \prime }+y y^{\prime }-y^{3}+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

26.560

12864

\begin{align*} y^{\prime \prime }+\left (3 a +y\right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

17.812

12865

\begin{align*} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )&=0 \\ \end{align*}

[NONE]

0.546

12866

\begin{align*} y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.501

12867

\begin{align*} y^{\prime \prime }-3 y y^{\prime }-3 a y^{2}-4 a^{2} y-b&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19.123

12868

\begin{align*} y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.501

12869

\begin{align*} y^{\prime \prime }-2 a y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.823

12870

\begin{align*} y^{\prime \prime }+a y y^{\prime }+y^{3} b&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

31.014

12871

\begin{align*} b y+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.011

12872

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.966

12873

\begin{align*} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.019

12874

\begin{align*} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.589

12875

\begin{align*} b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.196

12876

\begin{align*} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.143

12877

\begin{align*} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{v}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.495

12878

\begin{align*} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

12879

\begin{align*} y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

34.456

12880

\begin{align*} y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}}+b \\ \end{align*}

[[_2nd_order, _missing_x]]

80.147

12881

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.589

12882

\begin{align*} y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

53.524

12883

\begin{align*} y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

241.331

12884

\begin{align*} y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.686

12885

\begin{align*} y^{\prime \prime }&=2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.631

12886

\begin{align*} y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.265

12887

\begin{align*} 9 {y^{\prime }}^{4}+8 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.932

12888

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-x y^{n}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

12889

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+a \,x^{v} y^{n}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.385

12890

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+x \,{\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

12891

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.387

12892

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.572

12893

\begin{align*} y^{\prime \prime } x +\left (-1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.765

12894

\begin{align*} y^{\prime \prime } x -x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.448

12895

\begin{align*} y^{\prime \prime } x +a \left (-y+y^{\prime } x \right )^{2}-b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.459

12896

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.292

12897

\begin{align*} x^{2} y^{\prime \prime }&=a \left (y^{n}-y\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

12898

\begin{align*} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

12899

\begin{align*} x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.092

12900

\begin{align*} x^{2} y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}-b \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.527