2.2.136 Problems 13501 to 13600

Table 2.273: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13501

\[ {}x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

1.447

13502

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.930

13503

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.974

13504

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.772

13505

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.776

13506

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.115

13507

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.798

13508

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.810

13509

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.904

13510

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.827

13511

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.276

13512

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.026

13513

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.214

13514

\[ {}y^{\prime } = x -1 \]

[_quadrature]

0.216

13515

\[ {}y^{\prime } = 1-y \]

[_quadrature]

0.341

13516

\[ {}y^{\prime } = 1+y \]

[_quadrature]

0.299

13517

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

0.468

13518

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

0.576

13519

\[ {}y^{\prime } = y x \]

[_separable]

0.977

13520

\[ {}y^{\prime } = -y x \]

[_separable]

1.205

13521

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

0.978

13522

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

0.979

13523

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

0.813

13524

\[ {}y^{\prime } = y x \]

[_separable]

0.978

13525

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2.580

13526

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

1.068

13527

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

0.393

13528

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

0.655

13529

\[ {}y^{\prime } = x^{3}+y^{3} \]

[_Abel]

0.288

13530

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

0.870

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.328

13532

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.110

13533

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.312

13534

\[ {}y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

[‘y=_G(x,y’)‘]

0.917

13535

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

2.083

13536

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.605

13537

\[ {}y^{\prime } = \frac {1}{y x} \]

[_separable]

1.182

13538

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

0.344

13539

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]

[_quadrature]

28.177

13540

\[ {}y^{\prime } = \frac {y}{-x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.286

13541

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

1.912

13542

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

3.460

13543

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

1.022

13544

\[ {}y^{\prime } = \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

2.360

13545

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3.967

13546

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.698

13547

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

0.638

13548

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

0.632

13549

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

0.455

13550

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

0.542

13551

\[ {}y^{\prime } = y x +\frac {1}{x^{2}+1} \]
i.c.

[_linear]

1.854

13552

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

1.178

13553

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

1.950

13554

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

2.839

13555

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

2.703

13556

\[ {}y^{\prime } = \cot \left (x \right ) y+\csc \left (x \right ) \]
i.c.

[_linear]

1.473

13557

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

3.986

13558

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.187

13559

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

0.333

13560

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

0.399

13561

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

0.411

13562

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

0.440

13563

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.394

13564

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.333

13565

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

0.366

13566

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

0.406

13567

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

0.730

13568

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

0.408

13569

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

0.791

13570

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

0.394

13571

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

0.440

13572

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

1.637

13573

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.314

13574

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

5.077

13575

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

1.019

13576

\[ {}y^{\prime } = y x +x \]
i.c.

[_separable]

1.247

13577

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

1.573

13578

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

1.674

13579

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

0.462

13580

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

1.677

13581

\[ {}y^{\prime } = \frac {1-y x}{x^{2}} \]

[_linear]

0.879

13582

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.102

13583

\[ {}y^{\prime } = \frac {y^{2}}{1-y x} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.205

13584

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

0.605

13585

\[ {}y^{\prime } = y x +2 \]
i.c.

[_linear]

0.998

13586

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.272

13587

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

0.971

13588

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

1.605

13589

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

1.590

13590

\[ {}y^{\prime } = \cot \left (x \right ) y+\sin \left (x \right ) \]
i.c.

[_linear]

1.691

13591

\[ {}x -y y^{\prime } = 0 \]

[_separable]

2.579

13592

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1.067

13593

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

1.062

13594

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

1.818

13595

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

2.168

13596

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.178

13597

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.336

13598

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

0.944

13599

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.258

13600

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.313