# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.126 |
|
\[
{}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
2.518 |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.269 |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.203 |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.276 |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.557 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.869 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.113 |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.580 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.121 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.808 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
15.231 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.437 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.502 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.398 |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.954 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.884 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.073 |
|
\[
{}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
35.944 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.609 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.537 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.768 |
|
\[
{}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.558 |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.592 |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.510 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.501 |
|
\[
{}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.656 |
|
\[
{}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.730 |
|
\[
{}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.372 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.135 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.300 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.972 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.126 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.101 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.352 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.467 |
|
\[
{}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.127 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.357 |
|
\[
{}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.117 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.931 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.124 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
0.122 |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.125 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.648 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.465 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.143 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 2 x \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
4.992 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.914 |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.244 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.718 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.974 |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.864 |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 4 x -8
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.318 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.395 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 10 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.811 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.853 |
|
\[
{}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.371 |
|
\[
{}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.021 |
|
\[
{}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.166 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.529 |
|
\[
{}y^{\prime \prime }+8 y^{\prime } x -4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.535 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.515 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.499 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +\left (3 x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.586 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +\left (3 x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.590 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.608 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.607 |
|
\[
{}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.591 |
|
\[
{}\left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.603 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.488 |
|
\[
{}y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.470 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.609 |
|
\[
{}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.575 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.625 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.651 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.617 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
0.710 |
|
\[
{}\left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.888 |
|
\[
{}\left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.983 |
|
\[
{}\left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.170 |
|
\[
{}\left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.132 |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.813 |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.799 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+\frac {8}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.828 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\left (2 x^{2}+\frac {5}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.827 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.759 |
|
\[
{}2 x y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.796 |
|
\[
{}3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.799 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.706 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.847 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.819 |
|
\[
{}x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.740 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.895 |
|
\[
{}\left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.872 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {3 y}{4} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.788 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.237 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.193 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.240 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.278 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.747 |
|