2.2.137 Problems 13601 to 13700

Table 2.275: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13601

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

2.328

13602

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

1.993

13603

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

2.452

13604

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

0.483

13605

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

0.655

13606

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

0.547

13607

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

0.533

13608

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

0.708

13609

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

0.562

13610

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

2.775

13611

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

2.025

13612

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

1.767

13613

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

2.957

13614

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.236

13615

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.098

13616

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.225

13617

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.182

13618

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

20.920

13619

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

6.994

13620

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

11.797

13621

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

5.860

13622

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

12.427

13623

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

3.176

13624

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

5.454

13625

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

20.622

13626

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.676

13627

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.025

13628

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.979

13629

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.951

13630

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.813

13631

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.724

13632

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.760

13633

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

3.908

13634

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

4.482

13635

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

3.070

13636

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

2.956

13637

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.419

13638

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.158

13639

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.512

13640

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.604

13641

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.101

13642

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

9.402

13643

\[ {}x y^{\prime \prime \prime }+y^{\prime } x = 4 \]
i.c.

[[_3rd_order, _missing_y]]

0.623

13644

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.430

13645

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.748

13646

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

13647

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.223

13648

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.757

13649

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.658

13650

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

0.911

13651

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.300

13652

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.999

13653

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.068

13654

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.754

13655

\[ {}y^{\prime \prime }-4 y = 31 \]
i.c.

[[_2nd_order, _missing_x]]

2.503

13656

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.616

13657

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.497

13658

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.730

13659

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

13660

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.068

13661

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.077

13662

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.117

13663

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.070

13664

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.069

13665

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.072

13666

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

[[_high_order, _missing_x]]

0.076

13667

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.095

13668

\[ {}y^{\prime \prime }+\alpha y = 0 \]

[[_2nd_order, _missing_x]]

1.456

13669

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.082

13670

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.077

13671

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

0.692

13672

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.155

13673

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

[[_high_order, _missing_y]]

0.566

13674

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.160

13675

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.156

13676

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.486

13677

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.247

13678

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.240

13679

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.126

13680

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.129

13681

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.125

13682

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]
i.c.

[[_high_order, _with_linear_symmetries]]

0.132

13683

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.152

13684

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.260

13685

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

0.168

13686

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.279

13687

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.295

13688

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.293

13689

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

0.234

13690

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

0.230

13691

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.234

13692

\[ {}y^{\prime \prime }-9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.363

13693

\[ {}y^{\prime \prime }+9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.356

13694

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.570

13695

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.336

13696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

0.379

13697

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

0.254

13698

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.264

13699

\[ {}y^{\prime \prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.293

13700

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.355