2.2.138 Problems 13701 to 13800

Table 2.277: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13701

x6x+11x6x=et

[[_3rd_order, _with_linear_symmetries]]

0.117

13702

y3y+2y=sin(x)

[[_3rd_order, _linear, _nonhomogeneous]]

0.121

13703

x4x+8x8x+4x=sin(t)

[[_high_order, _linear, _nonhomogeneous]]

0.156

13704

x5x+4x=et

[[_high_order, _with_linear_symmetries]]

0.105

13705

t2y(t2+2t)y+(t+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.098

13706

(1+x)yxy+y=0

[[_2nd_order, _with_linear_symmetries]]

0.101

13707

(tcos(t)sin(t))xxtsin(t)xsin(t)=0

[[_2nd_order, _with_linear_symmetries]]

0.306

13708

(t2+t)x+(t2+2)x+(2t)x=0

[[_2nd_order, _with_linear_symmetries]]

0.112

13709

yxy+y=0

[_Hermite]

0.103

13710

tan(t)x3x+(tan(t)+3cot(t))x=0

[[_2nd_order, _with_linear_symmetries]]

0.093

13711

yy6y=ex

[[_2nd_order, _with_linear_symmetries]]

1.106

13712

xx=1t

[[_2nd_order, _linear, _nonhomogeneous]]

1.188

13713

y+4y=cot(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

5.555

13714

t2x2x=t3

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.858

13715

x4x=tan(t)

[[_2nd_order, _missing_y]]

2.916

13716

(tan(x)21)y4tan(x)3y+2ysec(x)4=(tan(x)21)(12sin(x)2)

[[_2nd_order, _linear, _nonhomogeneous]]

0.416

13717

x2y4xy+6y=0
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.377

13718

4x2y+y=0
i.c.

[[_Emden, _Fowler]]

0.776

13719

t2x5tx+10x=0
i.c.

[[_Emden, _Fowler]]

4.034

13720

t2x+txx=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.573

13721

x2z+3xz+4z=0
i.c.

[[_Emden, _Fowler]]

3.876

13722

x2yxy3y=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.704

13723

4t2x+8tx+5x=0
i.c.

[[_Emden, _Fowler]]

3.580

13724

x2y5xy+5y=0
i.c.

[[_Emden, _Fowler]]

1.867

13725

3x2z+5xzz=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.645

13726

t2x+3tx+13x=0
i.c.

[[_Emden, _Fowler]]

5.295

13727

ay+(ba)y+cy=0

[[_2nd_order, _missing_x]]

17.266

13728

(x2+1)y2xy+n(n+1)y=0

[_Gegenbauer]

0.648

13729

yxy+y=0

[_Hermite]

0.309

13730

(x2+1)y+y=0

[[_Emden, _Fowler]]

0.365

13731

2xy+y2y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.704

13732

y2xy4y=0

[[_2nd_order, _with_linear_symmetries]]

0.342

13733

y2xy+4y=0

[[_2nd_order, _with_linear_symmetries]]

0.331

13734

x(1x)y3xyy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

1.280

13735

x2y+xyx2y=0

[[_2nd_order, _with_linear_symmetries]]

0.426

13736

x2y+xy+(x21)y=0

[_Bessel]

1.123

13737

x2y+xy+(n2+x2)y=0

[_Bessel]

0.647

13738

[x=4xyy=2x+y+t2]
i.c.

system_of_ODEs

0.660

13739

[x=x4y+cos(2t)y=x+y]
i.c.

system_of_ODEs

0.880

13740

[x=2x+2yy=6x+3y+et]
i.c.

system_of_ODEs

0.646

13741

[x=5x4y+e3ty=x+y]
i.c.

system_of_ODEs

0.583

13742

[x=2x+5yy=2x+cos(3t)]
i.c.

system_of_ODEs

1.224

13743

[x=x+y+ety=4x2y+e2t]
i.c.

system_of_ODEs

0.709

13744

[x=8x+14yy=7x+y]
i.c.

system_of_ODEs

0.633

13745

[2204]

Eigenvectors

0.127

13746

[72261]

Eigenvectors

0.237

13747

[9226]

Eigenvectors

0.128

13748

[71411]

Eigenvectors

0.090

13749

[2332]

Eigenvectors

0.151

13750

[60013]

Eigenvectors

0.109

13751

[4212]

Eigenvectors

0.168

13752

[3111]

Eigenvectors

0.084

13753

[76121]

Eigenvectors

0.124

13754

[x=8x+14yy=7x+y]

system_of_ODEs

0.506

13755

[x=2xy=5x3y]

system_of_ODEs

0.461

13756

[x=11x2yy=3x+4y]

system_of_ODEs

0.467

13757

[x=x+20yy=40x19y]

system_of_ODEs

0.475

13758

[x=2x+2yy=xy]

system_of_ODEs

0.459

13759

[x=yy=xy]

system_of_ODEs

0.768

13760

[x=2x+3yy=6x+4y]

system_of_ODEs

0.552

13761

[x=11x2yy=13x9y]

system_of_ODEs

0.622

13762

[x=7x5yy=10x3y]

system_of_ODEs

0.566

13763

[x=5x4yy=x+y]

system_of_ODEs

0.454

13764

[x=6x+2yy=2x2y]

system_of_ODEs

0.439

13765

[x=3xyy=x5y]

system_of_ODEs

0.446

13766

[x=13xy=13y]

system_of_ODEs

0.293

13767

[x=7x4yy=x+3y]

system_of_ODEs

0.435

13768

[x=yxy=yx]

system_of_ODEs

0.318

13769

tan(y)cot(x)y=0

[_separable]

2.064

13770

12x+6y9+(5x+2y3)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.758

13771

xy=y+x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.567

13772

xy+y=x3

[_linear]

1.503

13773

yxy=x2yy

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.178

13774

x+3x=e2t

[[_linear, ‘class A‘]]

1.392

13775

sin(x)y+cos(x)y=1

[_linear]

2.015

13776

y=exy

[_separable]

2.396

13777

x=x+sin(t)

[[_linear, ‘class A‘]]

1.466

13778

x(ln(x)ln(y))yy=0

[[_homogeneous, ‘class A‘], _dAlembert]

10.733

13779

xyy2(x2+y2)y+xy=0

[_separable]

1.210

13780

y2=9y4

[_quadrature]

1.503

13781

x=ext+xt

[[_homogeneous, ‘class A‘], _dAlembert]

18.094

13782

x2+y2=1

[_quadrature]

0.348

13783

y=xy+1y

[_separable]

4.615

13784

x=y3y+2

[_quadrature]

1.017

13785

y=yx+y3

[[_homogeneous, ‘class G‘], _rational]

1.663

13786

y=y4y32

[_quadrature]

2.437

13787

y2+y2=4

[_quadrature]

0.729

13788

y=2yx42xy+5

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.830

13789

yyx+1+y2=0

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

2.040

13790

y=x+y2
i.c.

[[_Riccati, _special]]

15.077

13791

y=xy3+x2
i.c.

[_Abel]

0.775

13792

y=x2y2

[_Riccati]

1.184

13793

2x+2y1+(x+y2)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.884

13794

y3ye2x=0

[_quadrature]

0.654

13795

y=5xyy2

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.477

13796

y=xy2
i.c.

[[_Riccati, _special]]

17.322

13797

y=(x5y)1/3+2

[[_homogeneous, ‘class C‘], _dAlembert]

1.954

13798

(xy)yx2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.467

13799

x+5x=10t+2
i.c.

[[_linear, ‘class A‘]]

2.727

13800

x=xt+x2t3
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.588