2.2.138 Problems 13701 to 13800

Table 2.277: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13701

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.276

13702

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.311

13703

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

13704

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.282

13705

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.350

13706

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

13707

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

0.492

13708

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

13709

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.018

13710

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

13711

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.627

13712

\[ {}y^{\prime }+3 y = \delta \left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.303

13713

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.393

13714

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

13715

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.303

13716

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.518

13717

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

13718

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.169

13719

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.286

13720

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{1}+3 y_{2} \end {array}\right ] \]

system_of_ODEs

0.361

13721

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}+x -1 \\ y_{2}^{\prime }=3 y_{1}+2 y_{2}-5 x -2 \end {array}\right ] \]
i.c.

system_of_ODEs

0.562

13722

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }=2 y_{1}+1-6 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.057

13723

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.059

13724

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}-2 y_{2} \\ y_{2}^{\prime }=-y_{1}+y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.622

13725

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.050

13726

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.051

13727

\[ {}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (x -2\right )^{2}} \end {array}\right ] \]
i.c.

system_of_ODEs

0.050

13728

\[ {}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (x -2\right )^{2}} \end {array}\right ] \]
i.c.

system_of_ODEs

0.092

13729

\(\left [\begin {array}{cc} -2 & -4 \\ 1 & 3 \end {array}\right ]\)

Eigenvectors

0.142

13730

\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.188

13731

\(\left [\begin {array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end {array}\right ]\)

Eigenvectors

0.273

13732

\(\left [\begin {array}{ccc} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end {array}\right ]\)

Eigenvectors

0.186

13733

\(\left [\begin {array}{ccc} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end {array}\right ]\)

Eigenvectors

0.232

13734

\(\left [\begin {array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.227

13735

\(\left [\begin {array}{cccc} 1 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ 3 & 9 & 15 & 21 \\ 6 & 18 & 30 & 42 \end {array}\right ]\)

Eigenvectors

0.248

13736

\(\left [\begin {array}{ccccc} 1 & 3 & 5 & 2 & 4 \\ 5 & 2 & 4 & 1 & 3 \\ 4 & 1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \end {array}\right ]\)

Eigenvectors

4.516

13737

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+5 \,{\mathrm e}^{x} \\ y_{2}^{\prime }=y_{1}+4 y_{2}-2 \,{\mathrm e}^{-x} \end {array}\right ] \]

system_of_ODEs

1.175

13738

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-2 y_{1}+\sin \left (2 x \right ) \\ y_{2}^{\prime }=-3 y_{1}+y_{2}-2 \cos \left (3 x \right ) \end {array}\right ] \]

system_of_ODEs

2.475

13739

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{2} \\ y_{2}^{\prime }=3 y_{1} \\ y_{3}^{\prime }=2 y_{3}-y_{1} \end {array}\right ] \]

system_of_ODEs

0.580

13740

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 x y_{1}-x^{2} y_{2}+4 x \\ y_{2}^{\prime }={\mathrm e}^{x} y_{1}+3 \,{\mathrm e}^{-x} y_{2}-\cos \left (3 x \right ) \end {array}\right ] \]

system_of_ODEs

0.050

13741

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.296

13742

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+4 x -2 \\ y_{2}^{\prime }=y_{1}-2 y_{2}+3 x \end {array}\right ] \]

system_of_ODEs

0.464

13743

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.049

13744

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]

system_of_ODEs

0.049

13745

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2}-2 y_{3} \\ y_{2}^{\prime }=3 y_{2}-2 y_{3} \\ y_{3}^{\prime }=3 y_{1}+y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.431

13746

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-5 y_{2}-5 y_{3} \\ y_{2}^{\prime }=-y_{1}+4 y_{2}+2 y_{3} \\ y_{3}^{\prime }=3 y_{1}-5 y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.575

13747

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}+6 y_{2}+6 y_{3} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 y_{3} \\ y_{3}^{\prime }=-y_{1}-4 y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.464

13748

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}-3 y_{3} \\ y_{2}^{\prime }=-3 y_{1}+4 y_{2}-2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.730

13749

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }=-y_{1}-2 y_{2}-y_{3} \\ y_{3}^{\prime }=y_{1}-y_{2}-2 y_{3} \end {array}\right ] \]

system_of_ODEs

0.318

13750

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{2}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+2 y_{2}+4 y_{3} \end {array}\right ] \]

system_of_ODEs

0.319

13751

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2} \\ y_{2}^{\prime }=-y_{1}+2 y_{2} \\ y_{3}^{\prime }=3 y_{3}-4 y_{4} \\ y_{4}^{\prime }=4 y_{3}+3 y_{4} \end {array}\right ] \]

system_of_ODEs

0.770

13752

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=-3 y_{1}+2 y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=2 y_{1}-5 y_{3} \end {array}\right ] \]

system_of_ODEs

3.713

13753

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+2 y_{2} \\ y_{2}^{\prime }=-2 y_{1}+3 y_{2} \\ y_{3}^{\prime }=y_{3} \\ y_{4}^{\prime }=2 y_{4} \end {array}\right ] \]

system_of_ODEs

0.583

13754

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}+y_{4} \\ y_{2}^{\prime }=y_{1}-y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=y_{3} \end {array}\right ] \]

system_of_ODEs

0.441

13755

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.296

13756

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.275

13757

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]

system_of_ODEs

0.561

13758

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=5 x+y \end {array}\right ] \]

system_of_ODEs

0.374

13759

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.339

13760

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.336

13761

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x-y+2 \\ y^{\prime }=3 x-y-3 \end {array}\right ] \]

system_of_ODEs

0.505

13762

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y-6 \\ y^{\prime }=4 x-y+2 \end {array}\right ] \]

system_of_ODEs

0.704

13763

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

1.247

13764

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

1.669

13765

\[ {}y^{\prime } = t^{4} y \]

[_separable]

1.012

13766

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

0.375

13767

\[ {}y^{\prime } = 2-y \]

[_quadrature]

0.348

13768

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

0.387

13769

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

0.391

13770

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

1.454

13771

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

2.538

13772

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

1.100

13773

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

2.808

13774

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

0.466

13775

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

1.427

13776

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

0.707

13777

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

0.945

13778

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

1.112

13779

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

1.093

13780

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

1.386

13781

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

0.477

13782

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

1.059

13783

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

0.364

13784

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

1.540

13785

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

1.321

13786

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

0.478

13787

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

8.642

13788

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

0.637

13789

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

1.345

13790

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

0.598

13791

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

1.769

13792

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

1.276

13793

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

1.056

13794

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

2.061

13795

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

0.341

13796

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

1.800

13797

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

0.827

13798

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

0.223

13799

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

0.217

13800

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

0.542