2.2.142 Problems 14101 to 14200

Table 2.285: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14101

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.236

14102

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.248

14103

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.243

14104

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.606

14105

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

44.115

14106

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

72.089

14107

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

27.058

14108

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.728

14109

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.529

14110

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.833

14111

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

33.429

14112

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.167

14113

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.944

14114

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

24.937

14115

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

28.787

14116

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.500

14117

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.783

14118

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.319

14119

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.943

14120

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.839

14121

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

0.341

14122

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.303

14123

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.355

14124

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

14125

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

14126

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.658

14127

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.807

14128

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.695

14129

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

14130

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.495

14131

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

14132

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.567

14133

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.505

14134

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.740

14135

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.772

14136

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.860

14137

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.342

14138

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

14139

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.292

14140

\[ {}y^{\prime \prime }+16 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.375

14141

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

0.298

14142

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

0.591

14143

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

0.947

14144

\[ {}y^{\prime } x = \arcsin \left (x^{2}\right ) \]

[_quadrature]

20.120

14145

\[ {}y y^{\prime } = 2 x \]

[_separable]

2.722

14146

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

1.346

14147

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

0.744

14148

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.083

14149

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.892

14150

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.740

14151

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

0.218

14152

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

0.281

14153

\[ {}y^{\prime } x +\sqrt {x} = 2 \]

[_quadrature]

0.299

14154

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

[_quadrature]

0.345

14155

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

0.303

14156

\[ {}y^{\prime } = x \cos \left (x \right ) \]

[_quadrature]

0.301

14157

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

0.341

14158

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

0.370

14159

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

0.256

14160

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

1.441

14161

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

1.148

14162

\[ {}y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _quadrature]]

0.095

14163

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

0.418

14164

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

0.585

14165

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

0.444

14166

\[ {}y^{\prime } x +2 = \sqrt {x} \]
i.c.

[_quadrature]

0.530

14167

\[ {}y^{\prime } \cos \left (x \right )-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

0.851

14168

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.467

14169

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

1.436

14170

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

0.294

14171

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

0.443

14172

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

0.428

14173

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

0.269

14174

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

0.501

14175

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

0.432

14176

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

0.495

14177

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

0.405

14178

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

0.713

14179

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

0.437

14180

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

0.433

14181

\[ {}y^{\prime } x = \sin \left (x \right ) \]
i.c.

[_quadrature]

0.474

14182

\[ {}y^{\prime } x = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

0.502

14183

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]
i.c.

[_quadrature]

0.254

14184

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[_quadrature]

0.260

14185

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]
i.c.

[_quadrature]

0.275

14186

\[ {}y^{\prime }+3 y x = 6 x \]

[_separable]

0.996

14187

\[ {}\sin \left (x +y\right )-y y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

2.732

14188

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

1.566

14189

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

1.250

14190

\[ {}y^{\prime }-y^{2} = x \]

[[_Riccati, _special]]

0.895

14191

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

1.266

14192

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

1.310

14193

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

2.525

14194

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

0.401

14195

\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

[_Riccati]

1.461

14196

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

0.677

14197

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

1.802

14198

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

[_linear]

1.773

14199

\[ {}y^{\prime } x = \left (x -y\right )^{2} \]

[_rational, _Riccati]

1.418

14200

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

0.314