2.2.141 Problems 14001 to 14100

Table 2.283: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14001

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

14002

\[ {}2 x y^{\prime }-y = 0 \]

[_separable]

1.692

14003

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.754

14004

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.279

14005

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.200

14006

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

0.582

14007

\[ {}{y^{\prime }}^{2}-9 x y = 0 \]

[[_homogeneous, ‘class G‘]]

0.553

14008

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

0.464

14009

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

1.190

14010

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

1.056

14011

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.846

14012

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

3.124

14013

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.970

14014

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

1.403

14015

\[ {}x \ln \left (x \right ) y^{\prime }-\left (\ln \left (x \right )+1\right ) y = 0 \]

[_separable]

1.560

14016

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.423

14017

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.444

14018

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.197

14019

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.168

14020

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.124

14021

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.054

14022

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.078

14023

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.036

14024

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.015

14025

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.483

14026

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.151

14027

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.260

14028

\[ {}y^{\prime } = x -1 \]

[_quadrature]

0.257

14029

\[ {}y^{\prime } = 1-y \]

[_quadrature]

0.934

14030

\[ {}y^{\prime } = y+1 \]

[_quadrature]

0.919

14031

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

1.402

14032

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

1.348

14033

\[ {}y^{\prime } = x y \]

[_separable]

1.151

14034

\[ {}y^{\prime } = -x y \]

[_separable]

1.402

14035

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.024

14036

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

1.026

14037

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

0.968

14038

\[ {}y^{\prime } = x y \]

[_separable]

1.250

14039

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

3.010

14040

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

1.236

14041

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

0.994

14042

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

1.462

14043

\[ {}y^{\prime } = x^{3}+y^{3} \]

[_Abel]

0.665

14044

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

0.937

14045

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.555

14046

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.306

14047

\[ {}y^{\prime } = \frac {2 x -y}{3 y+x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.546

14048

\[ {}y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

[‘y=_G(x,y’)‘]

1.421

14049

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

2.197

14050

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.875

14051

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

1.405

14052

\[ {}y^{\prime } = \ln \left (y-1\right ) \]

[_quadrature]

0.902

14053

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

[_quadrature]

30.253

14054

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.888

14055

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

2.120

14056

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

3.885

14057

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

1.147

14058

\[ {}y^{\prime } = \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

3.680

14059

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.368

14060

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

10.407

14061

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

1.359

14062

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

1.344

14063

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

0.875

14064

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

0.665

14065

\[ {}y^{\prime } = x y+\frac {1}{x^{2}+1} \]
i.c.

[_linear]

2.084

14066

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

1.315

14067

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

2.115

14068

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

2.991

14069

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

2.844

14070

\[ {}y^{\prime } = y \cot \left (x \right )+\csc \left (x \right ) \]
i.c.

[_linear]

1.799

14071

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

4.309

14072

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.394

14073

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

0.422

14074

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

0.517

14075

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

0.530

14076

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

0.599

14077

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.542

14078

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.407

14079

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

0.429

14080

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

0.586

14081

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

0.888

14082

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

0.472

14083

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

1.411

14084

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

1.044

14085

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

1.180

14086

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

1.888

14087

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.523

14088

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

5.006

14089

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

1.939

14090

\[ {}y^{\prime } = x y+x \]
i.c.

[_separable]

1.461

14091

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

2.351

14092

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

1.763

14093

\[ {}2 y^{\prime } y = 1 \]

[_quadrature]

1.321

14094

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

1.929

14095

\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \]

[_linear]

0.960

14096

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.332

14097

\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.335

14098

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

1.292

14099

\[ {}y^{\prime } = x y+2 \]
i.c.

[_linear]

1.164

14100

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.486