2.2.141 Problems 14001 to 14100

Table 2.283: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14001

\[ {}\left [\begin {array}{c} x^{\prime }=x+4 y \\ y^{\prime }=-3 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.639

14002

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.375

14003

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+2 y \\ y^{\prime }=-4 x+6 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.475

14004

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-5 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.638

14005

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.649

14006

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-6 y \\ y^{\prime }=2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.648

14007

\[ {}\left [\begin {array}{c} x^{\prime }=x+4 y \\ y^{\prime }=-3 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.651

14008

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {9 x}{10}-2 y \\ y^{\prime }=x+\frac {11 y}{10} \end {array}\right ] \]
i.c.

system_of_ODEs

0.425

14009

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+10 y \\ y^{\prime }=-x+3 y \end {array}\right ] \]

system_of_ODEs

0.349

14010

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x \\ y^{\prime }=x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.357

14011

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.588

14012

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-y \\ y^{\prime }=x-4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.375

14013

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.377

14014

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x \\ y^{\prime }=x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.353

14015

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.369

14016

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-y \\ y^{\prime }=x-4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.371

14017

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.377

14018

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.351

14019

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y \\ y^{\prime }=3 x+6 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.434

14020

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.388

14021

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.211

14022

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.212

14023

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-y \\ y^{\prime }=4 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.394

14024

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

[[_2nd_order, _missing_x]]

0.717

14025

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

0.717

14026

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{10} \\ y^{\prime }=\frac {z}{5} \\ z^{\prime }=\frac {2 x}{5} \end {array}\right ] \]

system_of_ODEs

0.925

14027

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x \\ z^{\prime }=2 z \end {array}\right ] \]

system_of_ODEs

0.443

14028

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=3 x-2 y \\ z^{\prime }=-z \end {array}\right ] \]

system_of_ODEs

0.348

14029

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 z \\ y^{\prime }=-y \\ z^{\prime }=-3 x+z \end {array}\right ] \]

system_of_ODEs

0.459

14030

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 y-z \\ z^{\prime }=-y+2 z \end {array}\right ] \]

system_of_ODEs

0.295

14031

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=-2 y \\ z^{\prime }=-z \end {array}\right ] \]

system_of_ODEs

0.287

14032

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=-2 y \\ z^{\prime }=z \end {array}\right ] \]

system_of_ODEs

0.283

14033

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-4 y \\ z^{\prime }=-z \end {array}\right ] \]

system_of_ODEs

0.339

14034

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-4 y \\ z^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.289

14035

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=-2 y+z \\ z^{\prime }=-2 z \end {array}\right ] \]

system_of_ODEs

0.279

14036

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=z \\ z^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.226

14037

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=-2 y+3 z \\ z^{\prime }=-x+3 y-z \end {array}\right ] \]

system_of_ODEs

0.842

14038

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+3 y \\ y^{\prime }=z-y \\ z^{\prime }=5 x-5 y \end {array}\right ] \]

system_of_ODEs

0.668

14039

\[ {}\left [\begin {array}{c} x^{\prime }=-10 x+10 y \\ y^{\prime }=28 x-y \\ z^{\prime }=-\frac {8 z}{3} \end {array}\right ] \]

system_of_ODEs

0.600

14040

\[ {}\left [\begin {array}{c} x^{\prime }=z-y \\ y^{\prime }=z-x \\ z^{\prime }=z \end {array}\right ] \]

system_of_ODEs

0.299

14041

\(\left [\begin {array}{cc} 1 & 0 \\ 0 & 2 \end {array}\right ]\)

Eigenvectors

0.130

14042

\(\left [\begin {array}{cc} 0 & 1 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

0.183

14043

\[ {}\left [\begin {array}{c} x^{\prime }=3 x \\ y^{\prime }=-2 y \end {array}\right ] \]

system_of_ODEs

0.245

14044

\(\left [\begin {array}{cc} 1 & 0 \\ 2 & 3 \end {array}\right ]\)

Eigenvectors

0.136

14045

\[ {}\left [\begin {array}{c} x^{\prime }=0 \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.253

14046

\[ {}\left [\begin {array}{c} x^{\prime }=\pi ^{2} x+\frac {187 y}{5} \\ y^{\prime }=\sqrt {555}\, x+\frac {400617 y}{5000} \end {array}\right ] \]
i.c.

system_of_ODEs

0.801

14047

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.349

14048

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.477

14049

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+y \\ y^{\prime }=-x \end {array}\right ] \]

system_of_ODEs

0.486

14050

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=-2 x+y \end {array}\right ] \]

system_of_ODEs

0.352

14051

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.281

14052

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=-x \end {array}\right ] \]

system_of_ODEs

0.484

14053

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-4 x-4 y \end {array}\right ] \]

system_of_ODEs

0.286

14054

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-3 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.584

14055

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.947

14056

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.820

14057

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.015

14058

\[ {}y^{\prime \prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

42.617

14059

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

1.082

14060

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

0.903

14061

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

0.886

14062

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

20.876

14063

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

9.731

14064

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

0.967

14065

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

0.936

14066

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

0.917

14067

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.193

14068

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.219

14069

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

10.021

14070

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.122

14071

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.151

14072

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.131

14073

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.148

14074

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8.406

14075

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13.828

14076

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18.265

14077

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

0.910

14078

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]
i.c.

[[_2nd_order, _missing_x]]

1.044

14079

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

1.076

14080

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]
i.c.

[[_2nd_order, _missing_x]]

3.386

14081

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]
i.c.

[[_2nd_order, _missing_x]]

5.527

14082

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.802

14083

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.349

14084

\[ {}y^{\prime \prime }+2 y = -3 \]
i.c.

[[_2nd_order, _missing_x]]

2.202

14085

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.490

14086

\[ {}y^{\prime \prime }+9 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

2.138

14087

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.888

14088

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.871

14089

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

1.856

14090

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

1.874

14091

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.204

14092

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.752

14093

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.166

14094

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.073

14095

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.215

14096

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.237

14097

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4.921

14098

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.110

14099

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.225

14100

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.233