2.2.143 Problems 14201 to 14300

Table 2.287: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14201

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

14202

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.249

14203

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

0.269

14204

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

0.275

14205

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.296

14206

\[ {}y^{\prime \prime }-9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.297

14207

\[ {}y^{\prime \prime }+9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.349

14208

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

14209

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.326

14210

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

0.406

14211

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

0.317

14212

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.309

14213

\[ {}y^{\prime \prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.290

14214

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.333

14215

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.247

14216

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.302

14217

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.326

14218

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.397

14219

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.528

14220

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.607

14221

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

0.581

14222

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.666

14223

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.174

14224

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.747

14225

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.783

14226

\[ {}y^{\prime }+3 y = \delta \left (-2+x \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.411

14227

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (-2+x \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.554

14228

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.592

14229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.394

14230

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.156

14231

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

14232

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.353

14233

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.352

14234

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{1}+3 y_{2} \end {array}\right ] \]

system_of_ODEs

0.422

14235

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}+x -1 \\ y_{2}^{\prime }=3 y_{1}+2 y_{2}-5 x -2 \end {array}\right ] \]
i.c.

system_of_ODEs

0.655

14236

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }=2 y_{1}+1-6 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.055

14237

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.056

14238

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{2}-y_{1} \end {array}\right ] \]
i.c.

system_of_ODEs

0.707

14239

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.058

14240

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.059

14241

\[ {}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (-2+x \right )^{2}} \end {array}\right ] \]
i.c.

system_of_ODEs

0.059

14242

\[ {}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (-2+x \right )^{2}} \end {array}\right ] \]
i.c.

system_of_ODEs

0.060

14243

\(\left [\begin {array}{cc} -2 & -4 \\ 1 & 3 \end {array}\right ]\)

Eigenvectors

0.154

14244

\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.204

14245

\(\left [\begin {array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end {array}\right ]\)

Eigenvectors

0.296

14246

\(\left [\begin {array}{ccc} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end {array}\right ]\)

Eigenvectors

0.217

14247

\(\left [\begin {array}{ccc} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end {array}\right ]\)

Eigenvectors

0.266

14248

\(\left [\begin {array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.270

14249

\(\left [\begin {array}{cccc} 1 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ 3 & 9 & 15 & 21 \\ 6 & 18 & 30 & 42 \end {array}\right ]\)

Eigenvectors

0.283

14250

\(\left [\begin {array}{ccccc} 1 & 3 & 5 & 2 & 4 \\ 5 & 2 & 4 & 1 & 3 \\ 4 & 1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \end {array}\right ]\)

Eigenvectors

4.802

14251

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+5 \,{\mathrm e}^{x} \\ y_{2}^{\prime }=y_{1}+4 y_{2}-2 \,{\mathrm e}^{-x} \end {array}\right ] \]

system_of_ODEs

1.336

14252

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-2 y_{1}+\sin \left (2 x \right ) \\ y_{2}^{\prime }=-3 y_{1}+y_{2}-2 \cos \left (3 x \right ) \end {array}\right ] \]

system_of_ODEs

2.875

14253

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{2} \\ y_{2}^{\prime }=3 y_{1} \\ y_{3}^{\prime }=2 y_{3}-y_{1} \end {array}\right ] \]

system_of_ODEs

0.645

14254

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 x y_{1}-x^{2} y_{2}+4 x \\ y_{2}^{\prime }={\mathrm e}^{x} y_{1}+3 \,{\mathrm e}^{-x} y_{2}-\cos \left (3 x \right ) \end {array}\right ] \]

system_of_ODEs

0.059

14255

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.337

14256

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+4 x -2 \\ y_{2}^{\prime }=y_{1}-2 y_{2}+3 x \end {array}\right ] \]

system_of_ODEs

0.507

14257

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.052

14258

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]

system_of_ODEs

0.053

14259

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2}-2 y_{3} \\ y_{2}^{\prime }=3 y_{2}-2 y_{3} \\ y_{3}^{\prime }=3 y_{1}+y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.493

14260

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-5 y_{2}-5 y_{3} \\ y_{2}^{\prime }=-y_{1}+4 y_{2}+2 y_{3} \\ y_{3}^{\prime }=3 y_{1}-5 y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.654

14261

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}+6 y_{2}+6 y_{3} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 y_{3} \\ y_{3}^{\prime }=-y_{1}-4 y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.512

14262

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}-3 y_{3} \\ y_{2}^{\prime }=-3 y_{1}+4 y_{2}-2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.750

14263

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }=-y_{1}-2 y_{2}-y_{3} \\ y_{3}^{\prime }=y_{1}-y_{2}-2 y_{3} \end {array}\right ] \]

system_of_ODEs

0.359

14264

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{2}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+2 y_{2}+4 y_{3} \end {array}\right ] \]

system_of_ODEs

0.352

14265

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2} \\ y_{2}^{\prime }=-y_{1}+2 y_{2} \\ y_{3}^{\prime }=3 y_{3}-4 y_{4} \\ y_{4}^{\prime }=4 y_{3}+3 y_{4} \end {array}\right ] \]

system_of_ODEs

0.825

14266

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=-3 y_{1}+2 y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=2 y_{1}-5 y_{3} \end {array}\right ] \]

system_of_ODEs

4.716

14267

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+2 y_{2} \\ y_{2}^{\prime }=3 y_{2}-2 y_{1} \\ y_{3}^{\prime }=y_{3} \\ y_{4}^{\prime }=2 y_{4} \end {array}\right ] \]

system_of_ODEs

0.643

14268

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}+y_{4} \\ y_{2}^{\prime }=y_{1}-y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=y_{3} \end {array}\right ] \]

system_of_ODEs

0.506

14269

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.328

14270

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.301

14271

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]

system_of_ODEs

0.623

14272

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=5 x+y \end {array}\right ] \]

system_of_ODEs

0.418

14273

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.394

14274

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.372

14275

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x-y+2 \\ y^{\prime }=3 x-y-3 \end {array}\right ] \]

system_of_ODEs

0.558

14276

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y-6 \\ y^{\prime }=4 x-y+2 \end {array}\right ] \]

system_of_ODEs

0.788

14277

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

[_separable]

1.417

14278

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

1.684

14279

\[ {}y^{\prime } = t^{4} y \]

[_separable]

1.158

14280

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

0.923

14281

\[ {}y^{\prime } = 2-y \]

[_quadrature]

0.944

14282

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

0.956

14283

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

0.962

14284

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

1.476

14285

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

2.985

14286

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

1.254

14287

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

3.873

14288

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

0.974

14289

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

1.651

14290

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

1.623

14291

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

1.058

14292

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

1.312

14293

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

1.309

14294

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

1.497

14295

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

1.362

14296

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

1.237

14297

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

0.934

14298

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

1.889

14299

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

1.583

14300

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

1.187