2.2.143 Problems 14201 to 14300

Table 2.287: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14201

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

0.580

14202

\[ {}y^{\prime }+y x = 4 x \]

[_separable]

1.253

14203

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

0.908

14204

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

1.067

14205

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.038

14206

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

1.399

14207

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2.631

14208

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

0.473

14209

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

2.226

14210

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1.677

14211

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

1.909

14212

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

1.603

14213

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

3.328

14214

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

1.321

14215

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

1.497

14216

\[ {}y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.177

14217

\[ {}y^{\prime } = y x -4 x \]

[_separable]

0.947

14218

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

0.375

14219

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

1.590

14220

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

0.632

14221

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

1.081

14222

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

0.841

14223

\[ {}y^{\prime } = y x -4 x \]

[_separable]

0.993

14224

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

1.080

14225

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

1.813

14226

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

0.519

14227

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

1.116

14228

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

1.329

14229

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

1.732

14230

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

3.197

14231

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

0.403

14232

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

0.668

14233

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

1.669

14234

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

1.569

14235

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

1.747

14236

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

1.806

14237

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

0.887

14238

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

0.589

14239

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

1.421

14240

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

1.291

14241

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

2.015

14242

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

1.935

14243

\[ {}y^{\prime } = \frac {-1+y^{2}}{y x} \]
i.c.

[_separable]

2.716

14244

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 y x \]
i.c.

[_separable]

1.760

14245

\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.575

14246

\[ {}y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[‘y=_G(x,y’)‘]

1.502

14247

\[ {}y^{\prime }-x y^{2} = \sqrt {x} \]

[_Riccati]

1.608

14248

\[ {}y^{\prime } = 1+\left (y x +3 y\right )^{2} \]

[_Riccati]

1.910

14249

\[ {}y^{\prime } = 1+y x +3 y \]

[_linear]

1.037

14250

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

0.387

14251

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

0.263

14252

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

1.263

14253

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

1.060

14254

\[ {}y^{\prime } x +\cos \left (x^{2}\right ) = 827 y \]

[_linear]

2.012

14255

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

0.573

14256

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

0.984

14257

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

0.857

14258

\[ {}y^{\prime }-2 y x = x \]

[_separable]

0.982

14259

\[ {}y^{\prime } x +3 y-10 x^{2} = 0 \]

[_linear]

1.206

14260

\[ {}x^{2} y^{\prime }+2 y x = \sin \left (x \right ) \]

[_linear]

1.160

14261

\[ {}y^{\prime } x = \sqrt {x}+3 y \]

[_linear]

1.297

14262

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \]

[_linear]

2.505

14263

\[ {}y^{\prime } x +\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

2.159

14264

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

3.557

14265

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

0.625

14266

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

0.438

14267

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

1.211

14268

\[ {}3 y+y^{\prime } x = 20 x^{2} \]
i.c.

[_linear]

1.531

14269

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

1.450

14270

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

3.912

14271

\[ {}y^{\prime }+6 y x = \sin \left (x \right ) \]
i.c.

[_linear]

1.486

14272

\[ {}x^{2} y^{\prime }+y x = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

1.842

14273

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

1.384

14274

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.211

14275

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.772

14276

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

147.949

14277

\[ {}y^{\prime } = 1+\left (-x +y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

2.734

14278

\[ {}x^{2} y^{\prime }-y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.877

14279

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.238

14280

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.867

14281

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.519

14282

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

1.138

14283

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.651

14284

\[ {}y^{\prime }+3 \cot \left (x \right ) y = 6 \cos \left (x \right ) y^{{2}/{3}} \]

[_Bernoulli]

3.525

14285

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.466

14286

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.375

14287

\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.279

14288

\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.355

14289

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

72.263

14290

\[ {}\left (-x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.177

14291

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.082

14292

\[ {}\left (2 y x +2 x^{2}\right ) y^{\prime } = x^{2}+2 y x +2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

69.645

14293

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.264

14294

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.155

14295

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.374

14296

\[ {}-y+y^{\prime } x = \sqrt {y x +x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.698

14297

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.551

14298

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3.119

14299

\[ {}y^{\prime }+2 x = 2 \sqrt {y+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.948

14300

\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \]

[‘y=_G(x,y’)‘]

2.058