2.2.143 Problems 14201 to 14300

Table 2.287: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14201

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

2.080

14202

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

1.531

14203

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.500

14204

\[ {}y^{\prime } x = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

1.883

14205

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \]

[_Bernoulli]

5.358

14206

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.156

14207

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.177

14208

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

6.390

14209

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.834

14210

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.379

14211

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2.669

14212

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4.257

14213

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

2.935

14214

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.745

14215

\[ {}y = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.410

14216

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.471

14217

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.468

14218

\[ {}y = y {y^{\prime }}^{2}+2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.806

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

1.938

14220

\[ {}y = y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.418

14221

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

1.781

14222

\[ {}y = y^{\prime } x +\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.410

14223

\[ {}y = y^{\prime } x -\frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.615

14224

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

2.540

14225

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.071

14226

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

2.353

14227

\[ {}x y^{\prime \prime \prime } = 2 \]

[[_3rd_order, _quadrature]]

0.165

14228

\[ {}y^{\prime \prime } = a^{2} y \]

[[_2nd_order, _missing_x]]

3.078

14229

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.060

14230

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

1.364

14231

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.421

14232

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

1.650

14233

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]
i.c.

[[_2nd_order, _missing_x]]

5.462

14234

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

2.268

14235

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.292

14236

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.426

14237

\[ {}y^{\prime \prime } = 9 y \]

[[_2nd_order, _missing_x]]

2.385

14238

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.159

14239

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.208

14240

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

1.066

14241

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.204

14242

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

1.989

14243

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.337

14244

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.178

14245

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.280

14246

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.071

14247

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

14248

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

[[_3rd_order, _missing_x]]

0.076

14249

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.068

14250

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

0.085

14251

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.074

14252

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.084

14253

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.084

14254

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.339

14255

\[ {}s^{\prime \prime }-a^{2} s = 1+t \]

[[_2nd_order, _with_linear_symmetries]]

1.024

14256

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.707

14257

\[ {}y^{\prime \prime }-y = 5 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

1.340

14258

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.831

14259

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.253

14260

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

2.910

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

2.161

14262

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

75.161

14263

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.838

14264

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

[[_3rd_order, _with_linear_symmetries]]

0.112

14265

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.161

14266

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.033

14267

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4.235

14268

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.372

14269

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.545

14270

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.947

14271

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.493

14272

\[ {}\left [\begin {array}{c} x^{\prime }=y+1 \\ y^{\prime }=1+x \end {array}\right ] \]
i.c.

system_of_ODEs

0.645

14273

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.492

14274

\[ {}\left [\begin {array}{c} 4 x^{\prime }-y^{\prime }+3 x=\sin \left (t \right ) \\ x^{\prime }+y=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.582

14275

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.841

14276

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

2.802

14277

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.499

14278

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.862

14279

\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \]

[_linear]

1.707

14280

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.075

14281

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.989

14282

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

2.042

14283

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.746

14284

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

3.000

14285

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-3 y \\ y^{\prime }=5 x+6 y \end {array}\right ] \]

system_of_ODEs

0.701

14286

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-10 y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.545

14287

\[ {}\left [\begin {array}{c} x^{\prime }=12 x+18 y \\ y^{\prime }=-8 x-12 y \end {array}\right ] \]

system_of_ODEs

0.360

14288

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

1.785

14289

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]
i.c.

[_linear]

1.369

14290

\[ {}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=-x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.522

14291

\[ {}\left [\begin {array}{c} x^{\prime }=x-5 y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.467

14292

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.583

14293

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+2 y \\ y^{\prime }=3 x-2 y \end {array}\right ] \]

system_of_ODEs

0.602

14294

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=2 x+2 y \end {array}\right ] \]

system_of_ODEs

0.587

14295

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=3 x-y \end {array}\right ] \]

system_of_ODEs

0.411

14296

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.698

14297

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.361

14298

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.388

14299

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x-3 y \end {array}\right ] \]

system_of_ODEs

0.391

14300

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.382