2.2.144 Problems 14301 to 14400

Table 2.289: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14301

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.300

14302

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.861

14303

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.897

14304

\[ {}2 y x +y^{2}+\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.284

14305

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.250

14306

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

1.621

14307

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

1.548

14308

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

71.793

14309

\[ {}1+\ln \left (y x \right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

1.542

14310

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

1.280

14311

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

1.091

14312

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

2.744

14313

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

13.249

14314

\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.479

14315

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.231

14316

\[ {}3 y+3 y^{2}+\left (2 x +4 y x \right ) y^{\prime } = 0 \]

[_separable]

1.944

14317

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

0.988

14318

\[ {}2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9.046

14319

\[ {}4 y x +\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.723

14320

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.066

14321

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

1.198

14322

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

1.898

14323

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

1.405

14324

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.709

14325

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

0.300

14326

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

33.614

14327

\[ {}y^{\prime } = y^{2}-2 y x +x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.365

14328

\[ {}4 y x -6+x^{2} y^{\prime } = 0 \]

[_linear]

1.252

14329

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.750

14330

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12.957

14331

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

1.224

14332

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

1.491

14333

\[ {}3 x y^{3}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.268

14334

\[ {}2+2 x^{2}-2 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_linear]

1.373

14335

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

0.587

14336

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

0.339

14337

\[ {}y^{\prime } = \frac {1}{y x -3 x} \]

[_separable]

1.278

14338

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

1.648

14339

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.687

14340

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.435

14341

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]

[_quadrature]

0.405

14342

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.845

14343

\[ {}y^{\prime } = \frac {x +2 y}{x +2 y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.165

14344

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.522

14345

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.567

14346

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

1.965

14347

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.244

14348

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.079

14349

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

0.430

14350

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

0.952

14351

\[ {}x y y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.597

14352

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

0.313

14353

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.099

14354

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.939

14355

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1.322

14356

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

1.912

14357

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

2.767

14358

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

11.333

14359

\[ {}x +y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.395

14360

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

1.818

14361

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.143

14362

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

0.309

14363

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

2.521

14364

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.734

14365

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

1.631

14366

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.643

14367

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

1.574

14368

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

[_linear]

1.132

14369

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.132

14370

\[ {}x^{2} y^{\prime }+3 y x = 6 \,{\mathrm e}^{-x^{2}} \]

[_linear]

1.187

14371

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

1.132

14372

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

0.882

14373

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

1.073

14374

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

1.386

14375

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

0.907

14376

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.963

14377

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.379

14378

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.733

14379

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.770

14380

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.306

14381

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

[[_2nd_order, _missing_y]]

1.655

14382

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.254

14383

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

1.403

14384

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.187

14385

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

1.432

14386

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

[[_3rd_order, _missing_x]]

0.058

14387

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

[[_3rd_order, _missing_y]]

0.277

14388

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.314

14389

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

[[_high_order, _missing_x]]

0.063

14390

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.348

14391

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.385

14392

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.505

14393

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

1.060

14394

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.792

14395

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.376

14396

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.376

14397

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.710

14398

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.305

14399

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

1.106

14400

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.250