2.2.145 Problems 14401 to 14500

Table 2.291: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14401

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

3.527

14402

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.096

14403

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.054

14404

\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.306

14405

\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.283

14406

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

1.006

14407

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

1.012

14408

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1.407

14409

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.478

14410

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.550

14411

\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.608

14412

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.258

14413

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

1.078

14414

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

1.827

14415

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

1.639

14416

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

1.156

14417

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.868

14418

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

1.850

14419

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

1.339

14420

\[ {}y^{\prime } = -\frac {y}{t +1}+t^{2} \]

[_linear]

1.491

14421

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

1.404

14422

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

1.472

14423

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

1.410

14424

\[ {}y^{\prime } = -\frac {y}{t +1}+2 \]
i.c.

[_linear]

1.811

14425

\[ {}y^{\prime } = \frac {y}{t +1}+4 t^{2}+4 t \]
i.c.

[_linear]

1.286

14426

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

2.480

14427

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

1.709

14428

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

1.690

14429

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

2.388

14430

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

[_linear]

1.749

14431

\[ {}y^{\prime } = t^{2} y+4 \]

[_linear]

1.277

14432

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

[_linear]

1.968

14433

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

[[_linear, ‘class A‘]]

1.526

14434

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

[_linear]

2.618

14435

\[ {}y^{\prime } = \frac {y}{\sqrt {t^{3}-3}}+t \]

[_linear]

22.539

14436

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

1.178

14437

\[ {}y^{\prime } = t^{r} y+4 \]

[_linear]

1.398

14438

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.441

14439

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

1.392

14440

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

0.984

14441

\[ {}y^{\prime } = 3 y \]

[_quadrature]

1.054

14442

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

0.303

14443

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

1.842

14444

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

2.274

14445

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

1.117

14446

\[ {}y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]
i.c.

[‘x=_G(y,y’)‘]

10.814

14447

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.061

14448

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

1.069

14449

\[ {}y^{\prime } = t y \]

[_separable]

1.145

14450

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

1.056

14451

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

1.321

14452

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

1.310

14453

\[ {}y^{\prime } = t +\frac {2 y}{t +1} \]

[_linear]

1.019

14454

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

1.030

14455

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

1.807

14456

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

1.595

14457

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

1.746

14458

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.623

14459

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

1.292

14460

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

3.033

14461

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

1.247

14462

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

2.536

14463

\[ {}y^{\prime } = \frac {\left (t +1\right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

4.305

14464

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

1.810

14465

\[ {}y^{\prime } = 1-y^{2} \]
i.c.

[_quadrature]

1.507

14466

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

2.592

14467

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

1.066

14468

\[ {}y^{\prime } = \left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \]

[_Riccati]

4.221

14469

\[ {}y^{\prime } = \left (-1+y\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

[_Abel]

1.973

14470

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

1.260

14471

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

1.651

14472

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

1.211

14473

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.250

14474

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.288

14475

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.284

14476

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.335

14477

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.535

14478

\[ {}\left [\begin {array}{c} x^{\prime }=3 y \\ y^{\prime }=3 \pi y-\frac {x}{3} \end {array}\right ] \]

system_of_ODEs

0.688

14479

\[ {}\left [\begin {array}{c} p^{\prime }=3 p-2 q-7 r \\ q^{\prime }=-2 p+6 r \\ r^{\prime }=\frac {73 q}{100}+2 r \end {array}\right ] \]

system_of_ODEs

64.736

14480

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+2 \pi y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.632

14481

\[ {}\left [\begin {array}{c} x^{\prime }=\beta y \\ y^{\prime }=\gamma x-y \end {array}\right ] \]

system_of_ODEs

0.552

14482

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.464

14483

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.426

14484

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-y \\ y^{\prime }=2 x-5 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.455

14485

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-3 y \\ y^{\prime }=3 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.498

14486

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+3 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.470

14487

\[ {}\left [\begin {array}{c} x^{\prime }=1 \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.332

14488

\[ {}\left [\begin {array}{c} x^{\prime }=3 x \\ y^{\prime }=-2 y \end {array}\right ] \]

system_of_ODEs

0.296

14489

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-2 y \\ y^{\prime }=-x-3 y \end {array}\right ] \]

system_of_ODEs

0.339

14490

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x-2 y \\ y^{\prime }=-x-4 y \end {array}\right ] \]

system_of_ODEs

0.344

14491

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=-x+4 y \end {array}\right ] \]

system_of_ODEs

0.299

14492

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {x}{2} \\ y^{\prime }=x-\frac {y}{2} \end {array}\right ] \]

system_of_ODEs

0.287

14493

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=9 x \end {array}\right ] \]

system_of_ODEs

0.349

14494

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+4 y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.335

14495

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.487

14496

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.541

14497

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=x-4 y \end {array}\right ] \]

system_of_ODEs

0.338

14498

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-2 y \\ y^{\prime }=-2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.534

14499

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-2 y \\ y^{\prime }=-2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.546

14500

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-2 y \\ y^{\prime }=-2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.538