2.2.145 Problems 14401 to 14500

Table 2.291: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14401

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.661

14402

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.596

14403

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

0.625

14404

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

0.738

14405

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1.083

14406

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

0.713

14407

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

1.730

14408

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

1.132

14409

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

1.381

14410

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

2.090

14411

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.918

14412

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

5.420

14413

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

2.258

14414

\[ {}y^{\prime } = x y+x \]
i.c.

[_separable]

1.770

14415

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

2.621

14416

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

1.658

14417

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

1.683

14418

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

2.219

14419

\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \]

[_linear]

1.173

14420

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (2 y+x \right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.483

14421

\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.563

14422

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

1.487

14423

\[ {}y^{\prime } = x y+2 \]
i.c.

[_linear]

1.308

14424

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.865

14425

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

1.390

14426

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

2.044

14427

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

2.097

14428

\[ {}y^{\prime } = \cot \left (x \right ) y+\sin \left (x \right ) \]
i.c.

[_linear]

1.978

14429

\[ {}x -y y^{\prime } = 0 \]

[_separable]

3.570

14430

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1.636

14431

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

1.529

14432

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

2.179

14433

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

2.474

14434

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.723

14435

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.588

14436

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

1.454

14437

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.866

14438

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.880

14439

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

2.210

14440

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

1.859

14441

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

2.319

14442

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.508

14443

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.481

14444

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.562

14445

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

1.999

14446

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

1.560

14447

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

1.997

14448

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

3.094

14449

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

3.384

14450

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

2.768

14451

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

3.229

14452

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.619

14453

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.544

14454

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.713

14455

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.934

14456

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

133.155

14457

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

16.715

14458

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

115.042

14459

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

10.308

14460

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

48.593

14461

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

19.529

14462

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

4.035

14463

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

92.622

14464

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.283

14465

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.148

14466

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.191

14467

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.365

14468

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.824

14469

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.246

14470

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.788

14471

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

4.084

14472

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

82.032

14473

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

7.519

14474

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

3.162

14475

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.753

14476

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.451

14477

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.646

14478

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.039

14479

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.498

14480

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

19.395

14481

\[ {}x y^{\prime \prime \prime }+y^{\prime } x = 4 \]
i.c.

[[_3rd_order, _missing_y]]

0.782

14482

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.469

14483

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.709

14484

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

14485

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

14486

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.207

14487

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.165

14488

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

1.086

14489

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.323

14490

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.716

14491

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.076

14492

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.901

14493

\[ {}y^{\prime \prime }-4 y = 31 \]
i.c.

[[_2nd_order, _missing_x]]

3.210

14494

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.268

14495

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.641

14496

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1.043

14497

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

0.073

14498

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.071

14499

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.082

14500

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.089