2.2.145 Problems 14401 to 14500

Table 2.291: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14401

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.173

14402

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.242

14403

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

1.394

14404

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.519

14405

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.529

14406

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

1.184

14407

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

1.462

14408

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

1.700

14409

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]
i.c.

[[_3rd_order, _missing_x]]

0.117

14410

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]
i.c.

[[_3rd_order, _missing_y]]

0.361

14411

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

1.289

14412

\[ {}2 x y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.814

14413

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.351

14414

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.385

14415

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.495

14416

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.326

14417

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.253

14418

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.278

14419

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.482

14420

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.807

14421

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.782

14422

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.677

14423

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.760

14424

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

14425

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.522

14426

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

[[_2nd_order, _with_linear_symmetries]]

0.530

14427

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

[NONE]

0.084

14428

\[ {}3 y+y^{\prime } x = {\mathrm e}^{2 x} \]

[_linear]

1.078

14429

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.069

14430

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.451

14431

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

12.204

14432

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

[[_high_order, _missing_x]]

0.141

14433

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.051

14434

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.373

14435

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.368

14436

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[[_Emden, _Fowler]]

0.292

14437

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.312

14438

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.286

14439

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.309

14440

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.320

14441

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.317

14442

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.421

14443

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.309

14444

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.337

14445

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.361

14446

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.302

14447

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.349

14448

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.442

14449

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.480

14450

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.360

14451

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

[[_2nd_order, _with_linear_symmetries]]

0.378

14452

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.406

14453

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.409

14454

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

[[_3rd_order, _missing_x]]

0.064

14455

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.132

14456

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.067

14457

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.042

14458

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.827

14459

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.125

14460

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.937

14461

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.009

14462

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.671

14463

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.513

14464

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.753

14465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.989

14466

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.711

14467

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.995

14468

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.173

14469

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.072

14470

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.077

14471

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.094

14472

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.932

14473

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.930

14474

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.282

14475

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.058

14476

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

0.066

14477

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

0.720

14478

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

[[_2nd_order, _missing_x]]

0.712

14479

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

2.017

14480

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.244

14481

\[ {}4 y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.803

14482

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.806

14483

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.961

14484

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.935

14485

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.946

14486

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.219

14487

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.195

14488

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.186

14489

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.800

14490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.793

14491

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.790

14492

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.798

14493

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.798

14494

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.805

14495

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.073

14496

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.034

14497

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.070

14498

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.174

14499

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.089

14500

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.090