2.2.138 Problems 13701 to 13800

Table 2.289: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13701

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a \,x^{3} b +a c \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.558

13702

\begin{align*} y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a \,x^{3} b -a \,x^{2}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.835

13703

\begin{align*} y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.722

13704

\begin{align*} y^{\prime \prime }+\left (a \,x^{3} b +b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.458

13705

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.074

13706

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.785

13707

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.930

13708

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.788

13709

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.349

13710

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+x^{n -1} a n +c \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.546

13711

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.516

13712

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.635

13713

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.743

13714

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.829

13715

\begin{align*} y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.202

13716

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.917

13717

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.127

13718

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.103

13719

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.411

13720

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n +m} a b +b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.563

13721

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n +m} a b +x^{m} b c +x^{n -1} a n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.804

13722

\begin{align*} y^{\prime \prime } x +\frac {y^{\prime }}{2}+a y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

40.683

13723

\begin{align*} b y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.424

13724

\begin{align*} b x y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.081

13725

\begin{align*} y^{\prime \prime } x +a y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.595

13726

\begin{align*} y^{\prime \prime } x +n y^{\prime }+b \,x^{-2 n +1} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

45.894

13727

\begin{align*} y^{\prime \prime } x +\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.725

13728

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{n} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.569

13729

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.776

13730

\begin{align*} y^{\prime \prime } x +a x y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.828

13731

\begin{align*} y^{\prime \prime } x +\left (b -x \right ) y^{\prime }-a y&=0 \\ \end{align*}

[_Laguerre]

3.214

13732

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.454

13733

\begin{align*} y^{\prime \prime } x +\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.069

13734

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.774

13735

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.796

13736

\begin{align*} y^{\prime \prime } x -\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.148

13737

\begin{align*} y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.941

13738

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

6.487

13739

\begin{align*} y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.676

13740

\begin{align*} y^{\prime \prime } x +\left (b \,x^{2} a +b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.341

13741

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.045

13742

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.190

13743

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

7.591

13744

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.694

13745

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.824

13746

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.278

13747

\begin{align*} y^{\prime \prime } x +\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.500

13748

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

7.672

13749

\begin{align*} y^{\prime \prime } x +\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.382

13750

\begin{align*} y^{\prime \prime } x +\left (a \,x^{3} b +b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.516

13751

\begin{align*} y^{\prime \prime } x +\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime }+\left (d -1\right ) \left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.981

13752

\begin{align*} y^{\prime \prime } x +a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.253

13753

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.522

13754

\begin{align*} y^{\prime \prime } x +\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.579

13755

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+x^{n -1} a n y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.563

13756

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b -1\right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.985

13757

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b +n -1\right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.451

13758

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.561

13759

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.945

13760

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.876

13761

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{-2+n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.445

13762

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+x^{n -1} a n -b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.444

13763

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.242

13764

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.274

13765

\begin{align*} y^{\prime \prime } x +\left (x^{n +m} a b +a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.384

13766

\begin{align*} \left (a +x \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

9.230

13767

\begin{align*} \left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.781

13768

\begin{align*} \left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.578

13769

\begin{align*} \left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.339

13770

\begin{align*} \left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

21.419

13771

\begin{align*} a y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.224

13772

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.160

13773

\begin{align*} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.818

13774

\begin{align*} -\left (n \left (n +1\right )+a^{2} x^{2}\right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.661

13775

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.031

13776

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.974

13777

\begin{align*} x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.527

13778

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.968

13779

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.571

13780

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.898

13781

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.760

13782

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.165

13783

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.631

13784

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+b y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.463

13785

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.764

13786

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.130

13787

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y&=0 \\ \end{align*}

[_Bessel]

32.931

13788

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (\nu ^{2}+x^{2}\right ) y&=0 \\ \end{align*}

[[_Bessel, _modified]]

2.542

13789

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.787

13790

\begin{align*} \left (a \left (1+a \right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.536

13791

\begin{align*} x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (1+a \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.675

13792

\begin{align*} x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.835

13793

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.170

13794

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.943

13795

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.514

13796

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.518

13797

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.790

13798

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.815

13799

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (b -n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.291

13800

\begin{align*} a_{2} x^{2} y^{\prime \prime }+\left (a_{1} x^{2}+b_{1} x \right ) y^{\prime }+\left (a_{0} x^{2}+b_{0} x +c_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.572