2.2.149 Problems 14801 to 14900

Table 2.299: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14801

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.266

14802

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.218

14803

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.250

14804

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.270

14805

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

14806

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.293

14807

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

0.308

14808

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.260

14809

\[ {}y^{\prime }-2 y = 0 \]

[_quadrature]

0.471

14810

\[ {}y^{\prime }-2 y x = 0 \]

[_separable]

0.481

14811

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

[_separable]

0.491

14812

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

[_separable]

0.456

14813

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 y x = 0 \]

[_separable]

0.461

14814

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

0.477

14815

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

0.498

14816

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

[_separable]

0.508

14817

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

[_separable]

0.562

14818

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

0.480

14819

\[ {}\left (x +1\right ) y^{\prime }-y x = 0 \]

[_separable]

0.549

14820

\[ {}\left (x +1\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

0.562

14821

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.538

14822

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.470

14823

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.526

14824

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.430

14825

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.576

14826

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.556

14827

\[ {}y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.470

14828

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.731

14829

\[ {}y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.550

14830

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.596

14831

\[ {}y^{\prime \prime }-2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.562

14832

\[ {}y^{\prime \prime }-y^{\prime } x -2 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.546

14833

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\lambda y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.618

14834

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda y = 0 \]

[_Gegenbauer]

0.608

14835

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.466

14836

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.408

14837

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.520

14838

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.628

14839

\[ {}y^{\prime \prime }+y x = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

14840

\[ {}y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.707

14841

\[ {}y^{\prime \prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.142

14842

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

[_quadrature]

0.248

14843

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.593

14844

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

0.648

14845

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7.839

14846

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.813

14847

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11.558

14848

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.048

14849

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.662

14850

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.687

14851

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.763

14852

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.651

14853

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.623

14854

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[_separable]

0.562

14855

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

0.686

14856

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

0.663

14857

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.823

14858

\[ {}y^{\prime \prime }+3 y^{\prime } x -y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.756

14859

\[ {}x y^{\prime \prime }-3 y^{\prime } x +y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.709

14860

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

[_Titchmarsh]

0.716

14861

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.816

14862

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.671

14863

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.782

14864

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

[_separable]

0.951

14865

\[ {}\cos \left (x \right ) y^{\prime }+y = 0 \]

[_separable]

1.210

14866

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

[_separable]

0.887

14867

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.801

14868

\[ {}y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.900

14869

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.921

14870

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.835

14871

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.471

14872

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.704

14873

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.631

14874

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.506

14875

\[ {}3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.611

14876

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.625

14877

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.139

14878

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.684

14879

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.519

14880

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.809

14881

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.086

14882

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.773

14883

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.485

14884

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.607

14885

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.935

14886

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.831

14887

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.256

14888

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.809

14889

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {y}{1-x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.776

14890

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.572

14891

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

[_Bessel]

1.269

14892

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.853

14893

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.829

14894

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.883

14895

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x = 0 \]

[_Laguerre]

1.194

14896

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.804

14897

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.645

14898

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.796

14899

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.198

14900

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.714