2.2.148 Problems 14701 to 14800

Table 2.297: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14701

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

[[_2nd_order, _missing_x]]

0.745

14702

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

0.967

14703

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

1.031

14704

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.066

14705

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.764

14706

\[ {}y^{\prime \prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.842

14707

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

0.911

14708

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

1.400

14709

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.081

14710

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.615

14711

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.456

14712

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.178

14713

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.173

14714

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.502

14715

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y = 0 \]

[[_Emden, _Fowler]]

0.826

14716

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

[[_2nd_order, _missing_x]]

0.710

14717

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.742

14718

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.961

14719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

[[_3rd_order, _missing_x]]

0.098

14720

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.034

14721

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.939

14722

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.069

14723

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

1.434

14724

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

[[_2nd_order, _missing_x]]

0.810

14725

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

0.882

14726

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.187

14727

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.818

14728

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.288

14729

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.891

14730

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.949

14731

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

1.540

14732

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.965

14733

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.754

14734

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.416

14735

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.937

14736

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.453

14737

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.977

14738

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y]]

0.701

14739

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

2.889

14740

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.990

14741

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.970

14742

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.592

14743

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.117

14744

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

[[_high_order, _with_linear_symmetries]]

0.154

14745

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.701

14746

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.585

14747

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

0.217

14748

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

0.270

14749

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.276

14750

\[ {}y^{\prime \prime }-4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.308

14751

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.345

14752

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

14753

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

14754

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.308

14755

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.319

14756

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]
i.c.

[[_2nd_order, _missing_x]]

0.296

14757

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

14758

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

14759

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.486

14760

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[_Lienard]

0.048

14761

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.286

14762

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.323

14763

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.312

14764

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.306

14765

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.255

14766

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.339

14767

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.308

14768

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.314

14769

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.444

14770

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.311

14771

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

14772

\[ {}y^{\prime \prime }+4 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.296

14773

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.300

14774

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.336

14775

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

14776

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

14777

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.276

14778

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.296

14779

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.253

14780

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.292

14781

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.280

14782

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

0.253

14783

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

0.264

14784

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.249

14785

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.260

14786

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.270

14787

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

0.322

14788

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _quadrature]]

0.337

14789

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.543

14790

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

0.264

14791

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]
i.c.

[_quadrature]

0.318

14792

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.240

14793

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.286

14794

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.281

14795

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

14796

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.277

14797

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.302

14798

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

[[_2nd_order, _missing_y]]

0.209

14799

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.324

14800

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.273