2.2.150 Problems 14901 to 15000

Table 2.301: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14901

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

[[_3rd_order, _missing_y]]

0.298

14902

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.337

14903

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

[[_high_order, _missing_x]]

0.067

14904

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.392

14905

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.429

14906

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.536

14907

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

1.198

14908

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 2 y^{\prime } y \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.774

14909

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.406

14910

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.405

14911

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.902

14912

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.327

14913

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

1.190

14914

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.274

14915

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.198

14916

\[ {}\left (-3+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.263

14917

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

1.551

14918

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.549

14919

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.697

14920

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

1.266

14921

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

1.621

14922

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

1.838

14923

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]
i.c.

[[_3rd_order, _missing_x]]

0.144

14924

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]
i.c.

[[_3rd_order, _missing_y]]

0.389

14925

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

1.531

14926

\[ {}2 x y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.533

14927

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.401

14928

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.459

14929

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.544

14930

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.356

14931

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.272

14932

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.309

14933

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.526

14934

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.959

14935

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.819

14936

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.734

14937

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.853

14938

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

14939

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.640

14940

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

[[_2nd_order, _with_linear_symmetries]]

0.634

14941

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

[NONE]

0.088

14942

\[ {}x y^{\prime }+3 y = {\mathrm e}^{2 x} \]

[_linear]

1.136

14943

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.072

14944

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.405

14945

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

10.987

14946

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

[[_high_order, _missing_x]]

0.146

14947

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.048

14948

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.403

14949

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.395

14950

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

[[_Emden, _Fowler]]

0.312

14951

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.333

14952

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.301

14953

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

14954

\[ {}\left (x +1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.339

14955

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.331

14956

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.451

14957

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.339

14958

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.358

14959

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.393

14960

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.322

14961

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.375

14962

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.475

14963

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.519

14964

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.383

14965

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

[[_2nd_order, _with_linear_symmetries]]

0.400

14966

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.437

14967

\[ {}\left (x +1\right ) y^{\prime \prime }+x y^{\prime }-y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.432

14968

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

[[_3rd_order, _missing_x]]

0.067

14969

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.141

14970

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.073

14971

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

14972

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.142

14973

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.562

14974

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.428

14975

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.175

14976

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.974

14977

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.754

14978

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.098

14979

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.304

14980

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.036

14981

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.182

14982

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.349

14983

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.079

14984

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.085

14985

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.567

14986

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.320

14987

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.403

14988

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.423

14989

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.064

14990

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

[[_high_order, _missing_x]]

0.071

14991

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

0.837

14992

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

[[_2nd_order, _missing_x]]

0.821

14993

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

2.144

14994

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.386

14995

\[ {}4 y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.889

14996

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.842

14997

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.396

14998

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.406

14999

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.422

15000

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.627