2.2.150 Problems 14901 to 15000

Table 2.301: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14901

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.841

14902

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.888

14903

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.857

14904

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.907

14905

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.648

14906

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.036

14907

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.825

14908

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.342

14909

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.824

14910

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.184

14911

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.099

14912

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.011

14913

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.179

14914

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.920

14915

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.836

14916

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.602

14917

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x = 0 \]

[_Laguerre]

1.252

14918

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.227

14919

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=1-2 x \end {array}\right ] \]

system_of_ODEs

0.540

14920

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=6 x-7 y \end {array}\right ] \]

system_of_ODEs

0.333

14921

\[ {}\left [\begin {array}{c} t x^{\prime }+2 x=15 y \\ t y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.058

14922

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.522

14923

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.410

14924

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=3 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.499

14925

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.510

14926

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=2 x \end {array}\right ] \]

system_of_ODEs

0.285

14927

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.327

14928

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=8 x \end {array}\right ] \]

system_of_ODEs

0.343

14929

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.491

14930

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.388

14931

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+2 y-17 \\ y^{\prime }=4 x+y-13 \end {array}\right ] \]
i.c.

system_of_ODEs

0.579

14932

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }=4 x+y-7 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.553

14933

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }=x+6 y+2 \,{\mathrm e}^{3 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.556

14934

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=4 x+24 t \end {array}\right ] \]
i.c.

system_of_ODEs

0.574

14935

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.403

14936

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\ y^{\prime }=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.643

14937

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ] \]

system_of_ODEs

0.316

14938

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=3 x-7 y \end {array}\right ] \]

system_of_ODEs

0.521

14939

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y+4 \\ y^{\prime }=3 x-7 y+5 \end {array}\right ] \]

system_of_ODEs

0.828

14940

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=6 x+2 y \end {array}\right ] \]

system_of_ODEs

0.326

14941

\[ {}\left [\begin {array}{c} x^{\prime }=x y-6 y \\ y^{\prime }=x-y-5 \end {array}\right ] \]

system_of_ODEs

0.046

14942

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.302

14943

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.139

14944

\[ {}y y^{\prime }+y^{4} = \sin \left (x \right ) \]

[‘y=_G(x,y’)‘]

1.671

14945

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.178

14946

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

0.483

14947

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.273

14948

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

0.099

14949

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

[NONE]

0.353

14950

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

0.240

14951

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.219

14952

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

0.499

14953

\[ {}y^{\prime }+y x = 0 \]

[_separable]

1.155

14954

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.059

14955

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

0.725

14956

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.244

14957

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

[[_2nd_order, _missing_x]]

0.909

14958

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.638

14959

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

[[_2nd_order, _missing_x]]

1.401

14960

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.056

14961

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.056

14962

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

0.989

14963

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.881

14964

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

2.580

14965

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.735

14966

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

1.658

14967

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.077

14968

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

6.383

14969

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

0.295

14970

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

0.290

14971

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

0.262

14972

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

0.246

14973

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

0.260

14974

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

0.269

14975

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

0.293

14976

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

0.342

14977

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

0.348

14978

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

0.314

14979

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

0.368

14980

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

0.355

14981

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

0.389

14982

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

0.779

14983

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.281

14984

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.961

14985

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.934

14986

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.119

14987

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.117

14988

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.729

14989

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.477

14990

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

0.355

14991

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

0.538

14992

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

0.589

14993

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

0.402

14994

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

2.324

14995

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.971

14996

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

1.060

14997

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

[[_2nd_order, _missing_x]]

1.458

14998

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=-x-2 y \end {array}\right ] \]

system_of_ODEs

0.561

14999

\[ {}4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

[_rational]

30.907

15000

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

0.605