2.2.151 Problems 15001 to 15100

Table 2.303: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15001

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]
i.c.

[[_high_order, _missing_x]]

0.094

15002

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=-4 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.393

15003

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+4 y \\ y^{\prime }=2 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.480

15004

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

1.198

15005

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.058

15006

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.728

15007

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

[[_2nd_order, _missing_x]]

1.430

15008

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler]]

1.090

15009

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

1.661

15010

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

6.904

15011

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

[[_2nd_order, _missing_x]]

0.859

15012

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.190

15013

\[ {}y \cos \left (y x \right )+\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

69.091

15014

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

0.273

15015

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

[_quadrature]

0.304

15016

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

0.318

15017

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

0.329

15018

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.132

15019

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.664

15020

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.356

15021

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

0.511

15022

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

0.428

15023

\[ {}y^{\prime }+t^{2} = y^{2} \]
i.c.

[_Riccati]

1.223

15024

\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

[_rational]

0.377

15025

\[ {}y^{\prime } = y+\frac {1}{1-t} \]

[_linear]

1.062

15026

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

0.695

15027

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

2.056

15028

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]
i.c.

[_Riccati]

2.390

15029

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

1.469

15030

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

0.681

15031

\[ {}t y^{\prime } = y \]

[_separable]

1.086

15032

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

1.592

15033

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

0.424

15034

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

2.807

15035

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

5.603

15036

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

2.934

15037

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

3.172

15038

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

2.264

15039

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

2.228

15040

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

2.047

15041

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

6.855

15042

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

1.393

15043

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

1.198

15044

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

1.627

15045

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

1.782

15046

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

1.456

15047

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

1.711

15048

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

2.391

15049

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

3.016

15050

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

1.352

15051

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

1.955

15052

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

0.486

15053

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

1.901

15054

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

5.189

15055

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

0.611

15056

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

1.932

15057

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

2.047

15058

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

1.892

15059

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

0.760

15060

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

1.720

15061

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

2.051

15062

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

3.418

15063

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

1.330

15064

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

1.365

15065

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

1.686

15066

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1.943

15067

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

4.318

15068

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

0.413

15069

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

74.166

15070

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

8.457

15071

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

1.624

15072

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

1.642

15073

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

2.465

15074

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

71.112

15075

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

86.381

15076

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

2.078

15077

\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.506

15078

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

72.079

15079

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

1.786

15080

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

5.416

15081

\[ {}\frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

1.904

15082

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

76.257

15083

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

81.386

15084

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

1.456

15085

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

1.806

15086

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

1.909

15087

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

0.514

15088

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

[_separable]

1.768

15089

\[ {}y^{\prime } = \sin \left (t -y\right )+\sin \left (y+t \right ) \]

[_separable]

5.074

15090

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

1.242

15091

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

1.716

15092

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

2.485

15093

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

0.645

15094

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

1.040

15095

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

2.513

15096

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

0.329

15097

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

0.416

15098

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

0.590

15099

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

0.523

15100

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

7.241