2.2.151 Problems 15001 to 15100

Table 2.303: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15001

y=2+x2+y

[_separable]

1.646

15002

y3x2y2=3x2

[_separable]

2.276

15003

y3x2y2=3x2

[_separable]

2.268

15004

y=200y2y2

[_quadrature]

1.126

15005

y2y=10
i.c.

[_quadrature]

1.061

15006

yy=sin(x)
i.c.

[_separable]

2.093

15007

y=2x1+2xyy
i.c.

[_separable]

1.436

15008

yx=y2y
i.c.

[_separable]

1.962

15009

yx=y2y
i.c.

[_separable]

1.859

15010

y=1+y2xy
i.c.

[_separable]

3.643

15011

(1+y2)y=4xy
i.c.

[_separable]

2.530

15012

x2y+3x2y=sin(x)

[[_linear, ‘class A‘]]

1.873

15013

y2y+3x2y=sin(x)

[‘y=_G(x,y’)‘]

3.064

15014

yxy2=x

[_Riccati]

1.787

15015

y=1+(xy+3y)2

[_Riccati]

2.503

15016

y=1+xy+3y

[_linear]

1.226

15017

y=4y+8

[_quadrature]

0.684

15018

ye2x=0

[_quadrature]

0.398

15019

y=ysin(x)

[_separable]

1.492

15020

y+4y=y3

[_quadrature]

1.589

15021

yx+cos(x2)=827y

[_linear]

22.600

15022

2y+y=6

[_quadrature]

0.983

15023

2y+y=20e3x

[[_linear, ‘class A‘]]

1.153

15024

y=4y+16x

[[_linear, ‘class A‘]]

0.931

15025

y2xy=x

[_separable]

1.141

15026

yx+3y10x2=0

[_linear]

1.362

15027

x2y+2xy=sin(x)

[_linear]

1.318

15028

yx=x+3y

[_linear]

1.389

15029

cos(x)y+ysin(x)=cos(x)2

[_linear]

2.475

15030

yx+(5x+2)y=20x

[_linear]

2.091

15031

2xy+y=2xex

[_linear]

2.982

15032

y3y=6
i.c.

[_quadrature]

1.109

15033

y3y=6
i.c.

[_quadrature]

0.787

15034

y+5y=e3x
i.c.

[[_linear, ‘class A‘]]

1.363

15035

yx+3y=20x2
i.c.

[_linear]

1.745

15036

yx=y+x2cos(x)
i.c.

[_linear]

1.507

15037

(x2+1)y=x(3+3x2y)
i.c.

[_linear]

2.159

15038

y+6xy=sin(x)
i.c.

[_linear]

1.979

15039

xy+x2y=xsin(x)
i.c.

[_linear]

2.085

15040

yxy=x2ex2
i.c.

[_linear]

1.573

15041

y=1(3x+3y+2)2

[[_homogeneous, ‘class C‘], _dAlembert]

11.403

15042

y=(3x2y)2+13x2y+32

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.028

15043

cos(4y+8x3)y=2+2cos(4y+8x3)

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

121.559

15044

y=1+(yx)2
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

1.772

15045

x2yxy=y2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.702

15046

y=xy+yx

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.563

15047

cos(yx)(yyx)=1+sin(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

3.351

15048

y=xyx+y
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.673

15049

y+3y=3y3

[_quadrature]

1.395

15050

y3yx=y2x2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.790

15051

y+3cot(x)y=6cos(x)y2/3

[_Bernoulli]

4.043

15052

yyx=1y
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.554

15053

y=yx+x2y2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10.677

15054

3y=2+2x+3y+4

[[_homogeneous, ‘class C‘], _dAlembert]

1.336

15055

3y+2yx=4y

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.718

15056

y=4+1sin(4xy)

[[_homogeneous, ‘class C‘], _dAlembert]

40.087

15057

(yx)y=1

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.495

15058

(x+y)y=y

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.750

15059

(2xy+2x2)y=x2+2xy+2y2

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

139.245

15060

y+yx=x2y3

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.007

15061

y=22x+y32

[[_homogeneous, ‘class C‘], _dAlembert]

1.407

15062

y=22x+y3

[[_homogeneous, ‘class C‘], _dAlembert]

2.439

15063

yxy=x2+xy

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.571

15064

y+3y=28e2xy3

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.953

15065

y=(xy+3)2

[[_homogeneous, ‘class C‘], _Riccati]

3.180

15066

y+2x=2y+x2

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.045

15067

ycos(y)=exsin(y)

[‘y=_G(x,y’)‘]

2.284

15068

y=x(1+2yx2+y2x4)

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.382

15069

y=1yy2x

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.011

15070

exy2x2(y22x)+2exy2x2xyy=0

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.451

15071

2xy+y2+(x2+2xy)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.020

15072

2xy3+4x3+3x2y2y=0

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.515

15073

22x+3y2y=0

[_separable]

2.011

15074

1+3x2y2+(2x3y+6y)y=0

[_exact, _rational, _Bernoulli]

2.149

15075

4x3y+(x4y4)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

73.496

15076

1+ln(xy)+xyy=0

[[_homogeneous, ‘class G‘], _exact]

2.133

15077

1+ey+xeyy=0

[_separable]

1.494

15078

ey+(xey+1)y=0

[[_1st_order, _with_exponential_symmetries], _exact]

1.062

15079

1+y4+xy3y=0

[_separable]

3.617

15080

y+(y43x)y=0

[[_homogeneous, ‘class G‘], _rational]

2.522

15081

2yx+(4x2y3)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.872

15082

1+(1xtan(y))y=0

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.390

15083

3y+3y2+(2x+4xy)y=0

[_separable]

4.234

15084

2x(1+y)y=0

[_separable]

1.045

15085

2y3+(4x3y33xy2)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.930

15086

4xy+(3x2+5y)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.716

15087

6+12x2y2+(7x3y+xy)y=0

[[_homogeneous, ‘class G‘], _rational]

2.525

15088

yx=2y6x3

[_linear]

1.479

15089

yx=2y26y

[_separable]

2.062

15090

4y2x2y2+y=0

[_separable]

1.332

15091

y=x+y

[[_homogeneous, ‘class C‘], _dAlembert]

3.052

15092

x2yx=3

[_quadrature]

0.394

15093

xyyy2=x2y2+x4

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

31.472

15094

y=x22xy+y2

[[_homogeneous, ‘class C‘], _Riccati]

1.828

15095

4xy6+x2y=0

[_linear]

1.593

15096

xy26+x2yy=0

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.111

15097

x3+y3+xy2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15.105

15098

3yx3+yx=0

[_linear]

1.243

15099

1+2xy2+(2x2y+2y)y=0

[_exact, _rational, _Bernoulli]

2.219

15100

3xy3y+yx=0

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.485