2.2.152 Problems 15101 to 15200

Table 2.305: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15101

\[ {}y^{\prime } x +\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

2.276

15102

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

2.717

15103

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

1.491

15104

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

1.125

15105

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

1.566

15106

\[ {}y^{\prime } x +3 y = 20 x^{2} \]
i.c.

[_linear]

2.142

15107

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

1.840

15108

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

4.289

15109

\[ {}y^{\prime }+6 x y = \sin \left (x \right ) \]
i.c.

[_linear]

1.730

15110

\[ {}x^{2} y^{\prime }+x y = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

2.096

15111

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

1.858

15112

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.625

15113

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.955

15114

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

115.649

15115

\[ {}y^{\prime } = 1+\left (y-x \right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

2.959

15116

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.329

15117

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.802

15118

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.668

15119

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.981

15120

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

3.487

15121

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.264

15122

\[ {}y^{\prime }+3 \cot \left (x \right ) y = 6 \cos \left (x \right ) y^{{2}/{3}} \]

[_Bernoulli]

3.468

15123

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.999

15124

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.623

15125

\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.195

15126

\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.626

15127

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

38.771

15128

\[ {}\left (y-x \right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.523

15129

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.811

15130

\[ {}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

62.122

15131

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.839

15132

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.358

15133

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.770

15134

\[ {}-y+y^{\prime } x = \sqrt {x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.109

15135

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.889

15136

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3.299

15137

\[ {}y^{\prime }+2 x = 2 \sqrt {y+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.240

15138

\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \]

[‘y=_G(x,y’)‘]

2.074

15139

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.656

15140

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.100

15141

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.108

15142

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.565

15143

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.646

15144

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

1.884

15145

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

1.667

15146

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

72.728

15147

\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

2.001

15148

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

1.669

15149

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

1.250

15150

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

3.237

15151

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

8.214

15152

\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.511

15153

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.322

15154

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

[_separable]

3.957

15155

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

1.418

15156

\[ {}2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.826

15157

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.823

15158

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.461

15159

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

1.563

15160

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

2.333

15161

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

1.696

15162

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.141

15163

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

0.457

15164

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

34.892

15165

\[ {}y^{\prime } = y^{2}-2 x y+x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.808

15166

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]

[_linear]

1.635

15167

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.075

15168

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.271

15169

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

1.635

15170

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

1.618

15171

\[ {}3 x y^{3}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.738

15172

\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_linear]

1.658

15173

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

1.758

15174

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

0.564

15175

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

[_separable]

1.688

15176

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

1.526

15177

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.555

15178

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.615

15179

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]

[_quadrature]

0.638

15180

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10.120

15181

\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.804

15182

\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.569

15183

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.416

15184

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

2.340

15185

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.728

15186

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.139

15187

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

1.191

15188

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

1.365

15189

\[ {}x y y^{\prime } = x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.254

15190

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

0.551

15191

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.741

15192

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.165

15193

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1.760

15194

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.097

15195

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

2.333

15196

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

9.692

15197

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.382

15198

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

2.044

15199

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.337

15200

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

0.536