2.2.152 Problems 15101 to 15200

Table 2.305: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15101

xyy=2x2+2y2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

79.286

15102

y=x+2yx+2y+3

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.891

15103

y=x+2y2xy

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

40.450

15104

y=yx+tan(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

4.048

15105

y=xy2+3y2+x+3

[_separable]

2.345

15106

1(x+2y)y=0

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.819

15107

ln(y)+(xy+3)y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.424

15108

y2+1y=0

[_quadrature]

3.569

15109

y3y=12e2x

[[_linear, ‘class A‘]]

1.443

15110

xyy=y2+xy+x2

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.619

15111

(x+2)yx3=0

[_quadrature]

0.594

15112

xy3y=y4x2

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4.332

15113

y=4y16e4xy2

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.748

15114

2y6x+(x+1)y=0

[_linear]

1.881

15115

xy2+(x2y+10y4)y=0

[[_homogeneous, ‘class G‘], _exact, _rational]

2.288

15116

yyxy2=6xe4x2

[_Bernoulli]

2.988

15117

(yx+3)2(y1)=1

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

4.184

15118

x+yexy+xexyy=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.551

15119

y2y2cos(x)+y=0

[_separable]

2.382

15120

y+2y=sin(x)

[[_linear, ‘class A‘]]

1.529

15121

y+2x=sin(x)

[_quadrature]

0.586

15122

y=y3y3cos(x)

[_separable]

3.497

15123

y2exy22x+2xyexy2y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.138

15124

y=e4x+3y

[_separable]

2.804

15125

y=tan(6x+3y+1)2

[[_homogeneous, ‘class C‘], _dAlembert]

354.445

15126

y=e4x+3y

[_separable]

2.810

15127

y=x(6y+ex2)

[_linear]

1.477

15128

x(12y)+(yx2)y=0

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.352

15129

x2y+3xy=6ex2

[_linear]

1.480

15130

xy+4y=18x2

[[_2nd_order, _missing_y]]

1.132

15131

xy=2y

[[_2nd_order, _missing_y]]

0.810

15132

y=y

[[_2nd_order, _missing_x]]

1.623

15133

y+2y=8e2x

[[_2nd_order, _missing_y]]

2.046

15134

xy=y2x2y

[[_2nd_order, _missing_y]]

0.806

15135

(x2+1)y+2xy=0

[[_2nd_order, _missing_y]]

0.948

15136

y=4xy

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.384

15137

yy=1

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.909

15138

yy=y2

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.705

15139

xy=y2y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.312

15140

xyy2=6x5

[[_2nd_order, _missing_y]]

1.506

15141

yyy2=y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.348

15142

y=2y6

[[_2nd_order, _missing_x]]

2.042

15143

(y3)y=2y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.215

15144

y+4y=9e3x

[[_2nd_order, _missing_y]]

1.983

15145

y=y

[[_3rd_order, _missing_x]]

0.045

15146

xy+2y=6x

[[_3rd_order, _missing_y]]

0.127

15147

y=2y

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.998

15148

y=2y

[[_high_order, _missing_x]]

0.053

15149

yy=y2
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.584

15150

3yy=2y2
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.552

15151

sin(y)y+cos(y)y2=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.717

15152

y=y

[[_2nd_order, _missing_x]]

1.622

15153

y2+yy=2yy

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.039

15154

y2y+y+2yy2=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.472

15155

y=4xy

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.369

15156

yy=1

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.924

15157

xy=y2y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.308

15158

xyy=6x5

[[_2nd_order, _missing_y]]

1.043

15159

yyy2=y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.346

15160

yy=2y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.270

15161

(y3)y=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.279

15162

y+4y=9e3x

[[_2nd_order, _missing_y]]

2.081

15163

y=y(y2)

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.971

15164

xy+4y=18x2
i.c.

[[_2nd_order, _missing_y]]

1.617

15165

xy=2y
i.c.

[[_2nd_order, _missing_y]]

1.112

15166

y=y
i.c.

[[_2nd_order, _missing_x]]

2.134

15167

y+2y=8e2x
i.c.

[[_2nd_order, _missing_y]]

1.964

15168

y=y
i.c.

[[_3rd_order, _missing_x]]

0.120

15169

xy+2y=6x
i.c.

[[_3rd_order, _missing_y]]

0.210

15170

xy+2y=6
i.c.

[[_2nd_order, _missing_y]]

1.413

15171

2xyy=y21
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.747

15172

3yy=2y2
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.476

15173

yy+2y2=3yy
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.056

15174

y=yey
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

2.388

15175

y=2xy2
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.425

15176

y=2xy2
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.536

15177

y=2xy2
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.132

15178

y=2xy2
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.547

15179

y=2yy
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.116

15180

y=2yy
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15.660

15181

y=2yy
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.923

15182

y=2yy
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.066

15183

y+x2y4y=x3

[[_2nd_order, _linear, _nonhomogeneous]]

0.695

15184

y+x2y4y=0

[[_2nd_order, _with_linear_symmetries]]

0.685

15185

y+x2y=4y

[[_2nd_order, _with_linear_symmetries]]

0.685

15186

y+x2y+4y=y3

[NONE]

0.132

15187

xy+3y=e2x

[_linear]

1.385

15188

y+y=0

[[_3rd_order, _missing_x]]

0.058

15189

(y+1)y=y3

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.429

15190

y=2y5y+30e3x

[[_2nd_order, _with_linear_symmetries]]

13.451

15191

y+6y+3y83y25=0

[[_high_order, _missing_x]]

0.138

15192

yy+6y+3y=y

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.035

15193

y5y+6y=0

[[_2nd_order, _missing_x]]

0.271

15194

y10y+25y=0

[[_2nd_order, _missing_x]]

0.254

15195

x2y6xy+12y=0

[[_Emden, _Fowler]]

0.085

15196

2x2yxy+y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.101

15197

4x2y+y=0

[[_Emden, _Fowler]]

0.082

15198

y(4+2x)y+(4+4x)y=0

[[_2nd_order, _with_linear_symmetries]]

0.104

15199

(x+1)y+xyy=0

[[_2nd_order, _with_linear_symmetries]]

0.109

15200

yyx4x2y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.111