2.2.152 Problems 15101 to 15200

Table 2.305: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15101

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3.557

15102

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

1.490

15103

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

2.241

15104

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

0.569

15105

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

0.479

15106

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

0.472

15107

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

3.279

15108

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

1.706

15109

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

2.140

15110

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

2.658

15111

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

1.717

15112

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

1.584

15113

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

1.781

15114

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

1.781

15115

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

1.260

15116

\[ {}y^{\prime } = -\frac {y-2}{x -2} \]
i.c.

[_separable]

1.580

15117

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.118

15118

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.119

15119

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3.879

15120

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

0.796

15121

\[ {}y^{\prime } = 3 y \]

[_quadrature]

0.494

15122

\[ {}y^{\prime } = -y \]

[_quadrature]

0.453

15123

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

0.591

15124

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

0.837

15125

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

0.616

15126

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

1.170

15127

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

0.303

15128

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

0.902

15129

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]

[[_linear, ‘class A‘]]

1.095

15130

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

0.864

15131

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.034

15132

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

1.122

15133

\[ {}t y^{\prime }+y = t \]

[_linear]

1.636

15134

\[ {}y^{\prime } x +y = x \,{\mathrm e}^{x} \]

[_linear]

0.966

15135

\[ {}y^{\prime } x +y = {\mathrm e}^{-x} \]

[_linear]

0.935

15136

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

1.296

15137

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

1.570

15138

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

2.471

15139

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

[_linear]

1.471

15140

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

1.503

15141

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

2.990

15142

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

2.951

15143

\[ {}y^{\prime }+2 \cot \left (x \right ) y = \cos \left (x \right ) \]

[_linear]

1.577

15144

\[ {}y^{\prime }+y x = x^{3} \]

[_linear]

1.336

15145

\[ {}y^{\prime }-y x = x \]

[_separable]

0.992

15146

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

0.855

15147

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

0.811

15148

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.730

15149

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

1.243

15150

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

1.060

15151

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

0.823

15152

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.042

15153

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

0.967

15154

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

1.972

15155

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

1.258

15156

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[_linear]

1.302

15157

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]
i.c.

[_linear]

1.132

15158

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

1.540

15159

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

1.335

15160

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

1.076

15161

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

1.071

15162

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

0.865

15163

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.579

15164

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.556

15165

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.508

15166

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.128

15167

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

0.957

15168

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

0.815

15169

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

0.931

15170

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

0.845

15171

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

0.885

15172

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.660

15173

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

1.283

15174

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

0.988

15175

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

0.885

15176

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

0.830

15177

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

0.980

15178

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

1.254

15179

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.296

15180

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.296

15181

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]

[_linear]

1.102

15182

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

1.017

15183

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.329

15184

\[ {}y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.272

15185

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.092

15186

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

85.125

15187

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

2.674

15188

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

1.401

15189

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

19.092

15190

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

2.739

15191

\[ {}t -y \sin \left (t \right )+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

[_exact]

3.600

15192

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5.873

15193

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

1.498

15194

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

1.634

15195

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

0.248

15196

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

0.641

15197

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

1.500

15198

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.591

15199

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.247

15200

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.662