2.2.154 Problems 15301 to 15400

Table 2.309: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15301

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

1.520

15302

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

1.175

15303

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

1.063

15304

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

1.663

15305

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

1.366

15306

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

1.490

15307

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1.177

15308

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

36.817

15309

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.503

15310

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

0.863

15311

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.333

15312

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.211

15313

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

33.388

15314

\[ {}t^{2}-y+\left (y-t \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.059

15315

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

6.407

15316

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

[_exact]

4.111

15317

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.434

15318

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

0.361

15319

\[ {}y^{\prime }+t y = t \]

[_separable]

1.220

15320

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

1.119

15321

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

1.144

15322

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

1.879

15323

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.924

15324

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.192

15325

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2.202

15326

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.396

15327

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.318

15328

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.398

15329

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

126.254

15330

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.436

15331

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15.102

15332

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.909

15333

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

1.937

15334

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

1.056

15335

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

1.503

15336

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

2.487

15337

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

5.424

15338

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

1.960

15339

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.795

15340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.740

15341

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.880

15342

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.671

15343

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.005

15344

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.484

15345

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.718

15346

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.685

15347

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.582

15348

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

[[_2nd_order, _missing_x]]

0.730

15349

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

1.739

15350

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

[[_2nd_order, _missing_x]]

1.435

15351

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.130

15352

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.386

15353

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

0.368

15354

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.431

15355

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.361

15356

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.526

15357

\[ {}y^{\prime \prime }+49 y = 0 \]

[[_2nd_order, _missing_x]]

0.422

15358

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

0.290

15359

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler]]

0.293

15360

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.355

15361

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.292

15362

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

1.140

15363

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

1.510

15364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.291

15365

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.373

15366

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.367

15367

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.497

15368

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.090

15369

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

0.723

15370

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.112

15371

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

0.727

15372

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

0.719

15373

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.921

15374

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.719

15375

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.648

15376

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

1.772

15377

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

1.794

15378

\[ {}y^{\prime \prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

1.839

15379

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.772

15380

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.750

15381

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.744

15382

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.756

15383

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.426

15384

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.724

15385

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.000

15386

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.982

15387

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.981

15388

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.968

15389

\[ {}y^{\prime \prime }+36 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.740

15390

\[ {}y^{\prime \prime }+100 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.619

15391

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.000

15392

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.060

15393

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.806

15394

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.844

15395

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.354

15396

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.061

15397

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.300

15398

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.361

15399

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.820

15400

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.763