2.2.148 Problems 14701 to 14800

Table 2.309: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

14701

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.431

14702

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.550

14703

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.279

14704

\begin{align*} 3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.260

14705

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.696

14706

\begin{align*} 9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.210

14707

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.713

14708

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.102

14709

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.100

14710

\begin{align*} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.101

14711

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=4 x -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.059

14712

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.033

14713

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5.060

14714

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.816

14715

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=4 \sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.092

14716

\begin{align*} -2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{3} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.240

14717

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.705

14718

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.407

14719

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -5 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

4.223

14720

\begin{align*} x^{2} y^{\prime \prime }-2 y&=4 x -8 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.481

14721

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=-6 x^{3}+4 x^{2} \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.622

14722

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=10 x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.410

14723

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=2 x^{3} \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= -8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.850

14724

\begin{align*} x^{2} y^{\prime \prime }-6 y&=\ln \left (x \right ) \\ y \left (1\right ) &= {\frac {1}{6}} \\ y^{\prime }\left (1\right ) &= -{\frac {1}{6}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.309

14725

\begin{align*} \left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

21.763

14726

\begin{align*} \left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

45.301

14727

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.292

14728

\begin{align*} y^{\prime \prime }+8 y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.290

14729

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.287

14730

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.290

14731

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.340

14732

\begin{align*} y^{\prime \prime }-y^{\prime } x +\left (3 x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.336

14733

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.357

14734

\begin{align*} \left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.379

14735

\begin{align*} \left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.339

14736

\begin{align*} \left (x +3\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.373

14737

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.262

14738

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.259

14739

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y x&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.342

14740

\begin{align*} \left (2 x^{2}-3\right ) y^{\prime \prime }-2 y^{\prime } x +y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.319

14741

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.389

14742

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_Emden, _Fowler]]

0.440

14743

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}
Series expansion around \(x=1\).

[[_Emden, _Fowler]]

0.378

14744

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.459

14745

\begin{align*} \left (x^{2}-3 x \right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.672

14746

\begin{align*} \left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.046

14747

\begin{align*} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.141

14748

\begin{align*} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.102

14749

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.473

14750

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.461

14751

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+\frac {8}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.465

14752

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (2 x^{2}+\frac {5}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.484

14753

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.471

14754

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.589

14755

\begin{align*} 3 y^{\prime \prime } x -\left (x -2\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.607

14756

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.480

14757

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.510

14758

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.481

14759

\begin{align*} y^{\prime \prime } x -\left (x^{2}+2\right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.520

14760

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.571

14761

\begin{align*} \left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.668

14762

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\frac {3 y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.431

14763

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.539

14764

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.559

14765

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.525

14766

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.339

14767

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.481

14768

\begin{align*} 2 y^{\prime \prime } x +6 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

1.308

14769

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.395

14770

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.504

14771

\begin{align*} x^{\prime }+y^{\prime }-2 x-4 y&={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-y&={\mathrm e}^{4 t} \\ \end{align*}

system_of_ODEs

0.208

14772

\begin{align*} x^{\prime }+y^{\prime }-x&=-2 t \\ x^{\prime }+y^{\prime }-3 x-y&=t^{2} \\ \end{align*}

system_of_ODEs

0.178

14773

\begin{align*} x^{\prime }+y^{\prime }-x-3 y&={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+x&={\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

0.138

14774

\begin{align*} x^{\prime }+y^{\prime }-x-2 y&=2 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-3 x-4 y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.083

14775

\begin{align*} 2 x^{\prime }+y^{\prime }-x-y&={\mathrm e}^{-t} \\ x^{\prime }+2 x+y^{\prime }+y&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.714

14776

\begin{align*} 2 x^{\prime }+y^{\prime }-3 x-y&=t \\ x^{\prime }+y^{\prime }-4 x-y&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.566

14777

\begin{align*} x^{\prime }+y^{\prime }-x-6 y&={\mathrm e}^{3 t} \\ x^{\prime }+2 y^{\prime }-2 x-6 y&=t \\ \end{align*}

system_of_ODEs

0.809

14778

\begin{align*} x^{\prime }+y^{\prime }-x-3 y&=3 t \\ x^{\prime }+2 y^{\prime }-2 x-3 y&=1 \\ \end{align*}

system_of_ODEs

0.708

14779

\begin{align*} x^{\prime }+y^{\prime }+2 y&=\sin \left (t \right ) \\ x^{\prime }+y^{\prime }-x-y&=0 \\ \end{align*}

system_of_ODEs

0.201

14780

\begin{align*} x^{\prime }-y^{\prime }-2 x+4 y&=t \\ x^{\prime }+y^{\prime }-x-y&=1 \\ \end{align*}

system_of_ODEs

1.024

14781

\begin{align*} 2 x^{\prime }+y^{\prime }+x+5 y&=4 t \\ x^{\prime }+y^{\prime }+2 x+2 y&=2 \\ \end{align*}

system_of_ODEs

0.674

14782

\begin{align*} x^{\prime }+y^{\prime }-x+5 y&=t^{2} \\ x^{\prime }+2 y^{\prime }-2 x+4 y&=2 t +1 \\ \end{align*}

system_of_ODEs

1.605

14783

\begin{align*} 2 x^{\prime }+y^{\prime }+x+y&=t^{2}+4 t \\ x^{\prime }+y^{\prime }+2 x+2 y&=2 t^{2}-2 t \\ \end{align*}

system_of_ODEs

0.525

14784

\begin{align*} 3 x^{\prime }+2 y^{\prime }-x+y&=t -1 \\ x^{\prime }+y^{\prime }-x&=t +2 \\ \end{align*}

system_of_ODEs

0.628

14785

\begin{align*} 2 x^{\prime }+4 y^{\prime }+x-y&=3 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+2 x+2 y&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.611

14786

\begin{align*} 2 x^{\prime }+y^{\prime }-x-y&=-2 t \\ x^{\prime }+y^{\prime }+x-y&=t^{2} \\ \end{align*}

system_of_ODEs

0.513

14787

\begin{align*} 2 x^{\prime }+y^{\prime }-x-y&=1 \\ x^{\prime }+y^{\prime }+2 x-y&=t \\ \end{align*}

system_of_ODEs

0.563

14788

\begin{align*} x^{\prime }&=3 x+4 y \\ y^{\prime }&=2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.362

14789

\begin{align*} x^{\prime }&=5 x+3 y \\ y^{\prime }&=4 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 8 \\ \end{align*}

system_of_ODEs

0.375

14790

\begin{align*} x^{\prime }&=5 x+2 y+5 t \\ y^{\prime }&=3 x+4 y+17 t \\ \end{align*}

system_of_ODEs

0.574

14791

\begin{align*} x^{\prime }&=5 x-2 y \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.326

14792

\begin{align*} x^{\prime }&=5 x-y \\ y^{\prime }&=3 x+y \\ \end{align*}

system_of_ODEs

0.340

14793

\begin{align*} x^{\prime }&=-2 x+7 y \\ y^{\prime }&=3 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 9 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.375

14794

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=7 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 6 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.370

14795

\(\left [\begin {array}{cc} 1 & 2 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.204

14796

\(\left [\begin {array}{cc} 3 & 2 \\ 6 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.214

14797

\(\left [\begin {array}{cc} 3 & 1 \\ 12 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.216

14798

\(\left [\begin {array}{cc} -2 & 7 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.209

14799

\(\left [\begin {array}{cc} 3 & 4 \\ 5 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.216

14800

\(\left [\begin {array}{cc} 3 & -5 \\ -4 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.211