2.2.153 Problems 15201 to 15300

Table 2.307: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15201

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.079

15202

\[ {}\left (x +1\right ) y^{\prime \prime }+x y^{\prime }-y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.549

15203

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.638

15204

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.637

15205

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

0.164

15206

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.252

15207

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

0.367

15208

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

1.096

15209

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.561

15210

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.400

15211

\[ {}y^{\prime \prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

2.017

15212

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

0.853

15213

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.977

15214

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

2.083

15215

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

[[_2nd_order, _missing_x]]

0.833

15216

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

[[_Emden, _Fowler]]

1.161

15217

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

1.143

15218

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.072

15219

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.849

15220

\[ {}y^{\prime \prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2.059

15221

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.153

15222

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

1.031

15223

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.078

15224

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.704

15225

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.836

15226

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.196

15227

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.434

15228

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.848

15229

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

[[_Emden, _Fowler]]

1.026

15230

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

[[_2nd_order, _missing_x]]

0.817

15231

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.851

15232

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.158

15233

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

[[_3rd_order, _missing_x]]

0.107

15234

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.171

15235

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.138

15236

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.074

15237

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

1.633

15238

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

[[_2nd_order, _missing_x]]

0.843

15239

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

1.025

15240

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.291

15241

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.250

15242

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.449

15243

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.113

15244

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.037

15245

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

1.868

15246

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.089

15247

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.359

15248

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.609

15249

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.042

15250

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.627

15251

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.483

15252

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y]]

1.066

15253

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

3.457

15254

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.288

15255

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.099

15256

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.579

15257

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.125

15258

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

[[_high_order, _with_linear_symmetries]]

0.165

15259

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.924

15260

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.808

15261

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

0.274

15262

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

0.330

15263

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.394

15264

\[ {}y^{\prime \prime }-4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.277

15265

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.331

15266

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

15267

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.629

15268

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.291

15269

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

15270

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]
i.c.

[[_2nd_order, _missing_x]]

0.269

15271

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

15272

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.533

15273

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.582

15274

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[_Lienard]

0.285

15275

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.250

15276

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.311

15277

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.283

15278

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.289

15279

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.241

15280

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.330

15281

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.287

15282

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.304

15283

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.433

15284

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.278

15285

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

15286

\[ {}y^{\prime \prime }+4 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.305

15287

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.285

15288

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.391

15289

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

15290

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

15291

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.259

15292

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.299

15293

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.240

15294

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.316

15295

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.272

15296

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

0.329

15297

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

0.332

15298

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.261

15299

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.280

15300

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.473