# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.079 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }+x y^{\prime }-y = \left (x +1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.549 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.638 |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.637 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.164 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.252 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.367 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
1.096 |
|
\[
{}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.561 |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right )
\] |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
0.400 |
|
\[
{}y^{\prime \prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.017 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.853 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.977 |
|
\[
{}y^{\prime \prime }-36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.083 |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.833 |
|
\[
{}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.161 |
|
\[
{}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.143 |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.849 |
|
\[
{}y^{\prime \prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.059 |
|
\[
{}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.153 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.031 |
|
\[
{}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.078 |
|
\[
{}x^{2} y^{\prime \prime }-6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.704 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.836 |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.196 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.434 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.848 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.026 |
|
\[
{}y^{\prime \prime }+y^{\prime }-30 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.817 |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.851 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.158 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.107 |
|
\[
{}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.171 |
|
\[
{}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.138 |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.074 |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.633 |
|
\[
{}y^{\prime \prime }+20 y^{\prime }+100 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.843 |
|
\[
{}x y^{\prime \prime } = 3 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.025 |
|
\[
{}y^{\prime \prime }-5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.291 |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.250 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.449 |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.113 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.037 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.868 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.089 |
|
\[
{}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.359 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.609 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.042 |
|
\[
{}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.627 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.483 |
|
\[
{}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.066 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.457 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.288 |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.099 |
|
\[
{}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.579 |
|
\[
{}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.125 |
|
\[
{}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.165 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (x +1\right )^{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.924 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.808 |
|
\[
{}y^{\prime }+4 y = 0
\] |
[_quadrature] |
✓ |
0.274 |
|
\[
{}y^{\prime }-2 y = t^{3}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.330 |
|
\[
{}y^{\prime }+3 y = \operatorname {Heaviside}\left (-4+t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.394 |
|
\[
{}y^{\prime \prime }-4 y = t^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.277 |
|
\[
{}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.331 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.341 |
|
\[
{}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.629 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.291 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.290 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 7
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.269 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.461 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.533 |
|
\[
{}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.582 |
|
\[
{}t y^{\prime \prime }+y^{\prime }+t y = 0
\] |
[_Lienard] |
✓ |
0.285 |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.250 |
|
\[
{}y^{\prime \prime }+9 y = 27 t^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.311 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.283 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+17 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.289 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.241 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.330 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+17 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.287 |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
0.304 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.433 |
|
\[
{}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.278 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.458 |
|
\[
{}y^{\prime \prime }+4 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.305 |
|
\[
{}y^{\prime \prime }+4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.285 |
|
\[
{}y^{\prime \prime }+4 y = {\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.391 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.321 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.335 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.259 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.299 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.240 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.316 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.272 |
|
\[
{}y^{\prime } = \operatorname {Heaviside}\left (t -3\right )
\] |
[_quadrature] |
✓ |
0.329 |
|
\[
{}y^{\prime } = \operatorname {Heaviside}\left (t -3\right )
\] |
[_quadrature] |
✓ |
0.332 |
|
\[
{}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
0.261 |
|
\[
{}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
0.280 |
|
\[
{}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.473 |
|