2.2.153 Problems 15201 to 15300

Table 2.307: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15201

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

2.912

15202

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.655

15203

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

2.490

15204

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

466.791

15205

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

2.477

15206

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

[_linear]

1.312

15207

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.214

15208

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]

[_linear]

1.359

15209

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

1.140

15210

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

0.967

15211

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

1.754

15212

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

2.071

15213

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

0.890

15214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

1.017

15215

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.396

15216

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2.478

15217

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.647

15218

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.331

15219

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

[[_2nd_order, _missing_y]]

1.355

15220

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.266

15221

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

2.099

15222

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.208

15223

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

2.086

15224

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

[[_3rd_order, _missing_x]]

0.064

15225

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

[[_3rd_order, _missing_y]]

0.126

15226

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.107

15227

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

[[_high_order, _missing_x]]

0.068

15228

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.428

15229

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.457

15230

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.520

15231

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

1.748

15232

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.833

15233

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.424

15234

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.454

15235

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2.469

15236

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.341

15237

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

1.146

15238

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.275

15239

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.190

15240

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.259

15241

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

2.115

15242

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.706

15243

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.598

15244

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

1.214

15245

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

2.229

15246

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

2.026

15247

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]
i.c.

[[_3rd_order, _missing_x]]

0.125

15248

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]
i.c.

[[_3rd_order, _missing_y]]

0.222

15249

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

1.397

15250

\[ {}2 x y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.588

15251

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.408

15252

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.385

15253

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.461

15254

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.354

15255

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.273

15256

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.297

15257

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.520

15258

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.972

15259

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.827

15260

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.725

15261

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.863

15262

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

15263

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.624

15264

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

[[_2nd_order, _with_linear_symmetries]]

0.619

15265

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

[NONE]

0.137

15266

\[ {}y^{\prime } x +3 y = {\mathrm e}^{2 x} \]

[_linear]

1.236

15267

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.072

15268

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.433

15269

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

10.513

15270

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

[[_high_order, _missing_x]]

0.138

15271

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.053

15272

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.472

15273

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.463

15274

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[[_Emden, _Fowler]]

0.302

15275

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.319

15276

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.290

15277

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.320

15278

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

15279

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.327

15280

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.528

15281

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.319

15282

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.352

15283

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.376

15284

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.313

15285

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.366

15286

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.537

15287

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.572

15288

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.363

15289

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

[[_2nd_order, _with_linear_symmetries]]

0.378

15290

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.419

15291

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.418

15292

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

[[_3rd_order, _missing_x]]

0.071

15293

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.141

15294

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.077

15295

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.058

15296

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.392

15297

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.787

15298

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.662

15299

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.495

15300

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.873