2.2.156 Problems 15501 to 15600

Table 2.313: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15501

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.048

15502

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.127

15503

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.477

15504

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.222

15505

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

1.634

15506

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

1.958

15507

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.255

15508

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.216

15509

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

2.069

15510

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.177

15511

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 6 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.760

15512

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 64 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.783

15513

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

1.848

15514

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.266

15515

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.470

15516

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.288

15517

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.405

15518

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.531

15519

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.020

15520

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.827

15521

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.669

15522

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.747

15523

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.131

15524

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.280

15525

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.966

15526

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.440

15527

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.484

15528

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.839

15529

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

0.115

15530

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.237

15531

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = {\mathrm e}^{-x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

0.354

15532

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

1.036

15533

\[ {}y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.535

15534

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 12 x \sin \left (x^{2}\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.410

15535

\[ {}y^{\prime \prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

2.273

15536

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

1.173

15537

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.975

15538

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

2.410

15539

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

[[_2nd_order, _missing_x]]

1.062

15540

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

1.084

15541

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

1.108

15542

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.075

15543

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.174

15544

\[ {}y^{\prime \prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2.353

15545

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

1.078

15546

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

0.985

15547

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.078

15548

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.681

15549

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

2.021

15550

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.285

15551

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.350

15552

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

2.047

15553

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y = 0 \]

[[_Emden, _Fowler]]

0.925

15554

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

[[_2nd_order, _missing_x]]

1.074

15555

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.182

15556

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1.086

15557

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

[[_3rd_order, _missing_x]]

0.105

15558

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.114

15559

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.201

15560

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.075

15561

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

2.156

15562

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

[[_2nd_order, _missing_x]]

1.177

15563

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

0.954

15564

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.867

15565

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.461

15566

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.758

15567

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.396

15568

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.385

15569

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

1.767

15570

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.402

15571

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.502

15572

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.536

15573

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.382

15574

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.556

15575

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.733

15576

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y]]

0.756

15577

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

3.280

15578

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.227

15579

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.395

15580

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.784

15581

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.124

15582

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

[[_high_order, _with_linear_symmetries]]

0.160

15583

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.888

15584

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.716

15585

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

0.363

15586

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

0.421

15587

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.461

15588

\[ {}y^{\prime \prime }-4 y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.266

15589

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.311

15590

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.330

15591

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.607

15592

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.272

15593

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.276

15594

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]
i.c.

[[_2nd_order, _missing_x]]

0.252

15595

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.424

15596

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

15597

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.561

15598

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[_Lienard]

0.278

15599

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.250

15600

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.311