2.2.156 Problems 15501 to 15600

Table 2.313: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15501

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.143

15502

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.048

15503

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3.047

15504

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

0.450

15505

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

0.693

15506

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

0.765

15507

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

0.510

15508

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

2.983

15509

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.175

15510

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

[_linear]

1.132

15511

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

[[_2nd_order, _missing_x]]

1.837

15512

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=-x-2 y \end {array}\right ] \]

system_of_ODEs

0.615

15513

\[ {}4 x \left (y^{2}+x^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

[_rational]

32.165

15514

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

0.759

15515

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]
i.c.

[[_high_order, _missing_x]]

0.103

15516

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=-4 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.426

15517

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+4 y \\ y^{\prime }=2 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.519

15518

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

1.388

15519

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.193

15520

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.818

15521

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

[[_2nd_order, _missing_x]]

1.854

15522

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

[[_Emden, _Fowler]]

1.331

15523

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

1.978

15524

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8.017

15525

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

[[_2nd_order, _missing_x]]

0.987

15526

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.340

15527

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

35.278

15528

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

0.329

15529

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

[_quadrature]

0.354

15530

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

0.376

15531

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

0.385

15532

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.342

15533

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.220

15534

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.700

15535

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

0.571

15536

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

0.540

15537

\[ {}y^{\prime }+t^{2} = y^{2} \]
i.c.

[_Riccati]

1.428

15538

\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

[_rational]

0.677

15539

\[ {}y^{\prime } = y+\frac {1}{-t +1} \]

[_linear]

1.157

15540

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

1.717

15541

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

4.530

15542

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]
i.c.

[_Riccati]

2.454

15543

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

1.754

15544

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

1.629

15545

\[ {}t y^{\prime } = y \]

[_separable]

1.228

15546

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

1.870

15547

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

0.506

15548

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

10.656

15549

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

7.452

15550

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

11.417

15551

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

4.985

15552

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

222.026

15553

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

3.243

15554

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

8.827

15555

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

74.030

15556

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

1.691

15557

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

1.330

15558

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

1.806

15559

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

2.058

15560

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

1.534

15561

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

1.829

15562

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

2.497

15563

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

2.988

15564

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

1.495

15565

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

2.268

15566

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.202

15567

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

2.255

15568

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

5.856

15569

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

1.707

15570

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

2.174

15571

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

2.252

15572

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

3.137

15573

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

4.319

15574

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

1.773

15575

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

2.132

15576

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

2.750

15577

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

[_separable]

1.446

15578

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

1.464

15579

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

1.825

15580

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1.825

15581

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

3.116

15582

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

0.714

15583

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

40.592

15584

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

5.777

15585

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

1.987

15586

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

2.059

15587

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

2.451

15588

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

35.997

15589

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

36.487

15590

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

2.127

15591

\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.641

15592

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

39.833

15593

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

1.827

15594

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

5.889

15595

\[ {}\frac {-2+x}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

2.047

15596

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

43.932

15597

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

42.722

15598

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

1.585

15599

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

2.136

15600

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

2.198