2.2.156 Problems 15501 to 15600

Table 2.325: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15501

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

5.969

15502

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.444

15503

\begin{align*} {y^{\prime }}^{2}-4 y&=0 \\ \end{align*}

[_quadrature]

0.898

15504

\begin{align*} {y^{\prime }}^{2}-9 y x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.821

15505

\begin{align*} {y^{\prime }}^{2}&=x^{6} \\ \end{align*}

[_quadrature]

0.237

15506

\begin{align*} y^{\prime }-2 y x&=0 \\ \end{align*}

[_separable]

2.345

15507

\begin{align*} y^{\prime }+y&=x^{2}+2 x -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.396

15508

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.186

15509

\begin{align*} y^{\prime }&=x \sqrt {y} \\ \end{align*}

[_separable]

10.102

15510

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.000

15511

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ \end{align*}

[_quadrature]

2.539

15512

\begin{align*} x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y&=0 \\ \end{align*}

[_separable]

3.140

15513

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.043

15514

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.921

15515

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.777

15516

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.702

15517

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.146

15518

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y \left (2\right ) &= -4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.940

15519

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.705

15520

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -12 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.999

15521

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y^{\prime }\left (1\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.644

15522

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.194

15523

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.155

15524

\begin{align*} y^{\prime }&=1-x \\ \end{align*}

[_quadrature]

0.293

15525

\begin{align*} y^{\prime }&=x -1 \\ \end{align*}

[_quadrature]

0.285

15526

\begin{align*} y^{\prime }&=1-y \\ \end{align*}

[_quadrature]

0.605

15527

\begin{align*} y^{\prime }&=1+y \\ \end{align*}

[_quadrature]

0.549

15528

\begin{align*} y^{\prime }&=y^{2}-4 \\ \end{align*}

[_quadrature]

5.168

15529

\begin{align*} y^{\prime }&=4-y^{2} \\ \end{align*}

[_quadrature]

4.747

15530

\begin{align*} y^{\prime }&=y x \\ \end{align*}

[_separable]

2.453

15531

\begin{align*} y^{\prime }&=-y x \\ \end{align*}

[_separable]

2.323

15532

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ \end{align*}

[_Riccati]

8.280

15533

\begin{align*} y^{\prime }&=y^{2}-x^{2} \\ \end{align*}

[_Riccati]

7.029

15534

\begin{align*} y^{\prime }&=x +y \\ \end{align*}

[[_linear, ‘class A‘]]

1.109

15535

\begin{align*} y^{\prime }&=y x \\ \end{align*}

[_separable]

2.447

15536

\begin{align*} y^{\prime }&=\frac {x}{y} \\ \end{align*}

[_separable]

5.701

15537

\begin{align*} y^{\prime }&=\frac {y}{x} \\ \end{align*}

[_separable]

2.292

15538

\begin{align*} y^{\prime }&=1+y^{2} \\ \end{align*}

[_quadrature]

2.095

15539

\begin{align*} y^{\prime }&=y^{2}-3 y \\ \end{align*}

[_quadrature]

1.104

15540

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ \end{align*}

[_Abel]

1.540

15541

\begin{align*} y^{\prime }&={| y|} \\ \end{align*}

[_quadrature]

3.383

15542

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ \end{align*}

[_separable]

2.110

15543

\begin{align*} y^{\prime }&=\ln \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.779

15544

\begin{align*} y^{\prime }&=\frac {2 x -y}{x +3 y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.755

15545

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.586

15546

\begin{align*} y^{\prime }&=\frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \\ \end{align*}

[_linear]

2.984

15547

\begin{align*} y^{\prime }&=\frac {y x}{x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.084

15548

\begin{align*} y^{\prime }&=\frac {1}{y x} \\ \end{align*}

[_separable]

2.889

15549

\begin{align*} y^{\prime }&=\ln \left (-1+y\right ) \\ \end{align*}

[_quadrature]

0.768

15550

\begin{align*} y^{\prime }&=\sqrt {\left (y+2\right ) \left (-1+y\right )} \\ \end{align*}

[_quadrature]

1.180

15551

\begin{align*} y^{\prime }&=\frac {y}{-x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.161

15552

\begin{align*} y^{\prime }&=\frac {x}{y^{2}} \\ \end{align*}

[_separable]

3.328

15553

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ \end{align*}

[_separable]

4.427

15554

\begin{align*} y^{\prime }&=\frac {x y}{1-y} \\ \end{align*}

[_separable]

2.904

15555

\begin{align*} y^{\prime }&=\left (y x \right )^{{1}/{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

68.642

15556

\begin{align*} y^{\prime }&=\sqrt {\frac {y-4}{x}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

10.559

15557

\begin{align*} y^{\prime }&=-\frac {y}{x}+y^{{1}/{4}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

21.805

15558

\begin{align*} y^{\prime }&=4 y-5 \\ y \left (1\right ) &= 4 \\ \end{align*}

[_quadrature]

1.077

15559

\begin{align*} y^{\prime }+3 y&=1 \\ y \left (-2\right ) &= 1 \\ \end{align*}

[_quadrature]

1.091

15560

\begin{align*} y^{\prime }&=a y+b \\ y \left (c \right ) &= d \\ \end{align*}

[_quadrature]

1.396

15561

\begin{align*} y^{\prime }&=x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \\ y \left (2\right ) &= -1 \\ \end{align*}

[_quadrature]

0.553

15562

\begin{align*} y^{\prime }&=y x +\frac {1}{x^{2}+1} \\ y \left (-5\right ) &= 0 \\ \end{align*}

[_linear]

7.562

15563

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_linear]

2.406

15564

\begin{align*} y^{\prime }&=\frac {y}{x}+\tan \left (x \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_linear]

3.978

15565

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\ y \left (3\right ) &= 4 \\ \end{align*}

[_linear]

5.444

15566

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\ y \left (1\right ) &= -3 \\ \end{align*}

[_linear]

4.921

15567

\begin{align*} y^{\prime }&=\cot \left (x \right ) y+\csc \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_linear]

2.241

15568

\begin{align*} y^{\prime }&=-x \sqrt {1-y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

26.523

15569

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (6\right ) &= -9 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.292

15570

\begin{align*} y^{\prime }&=1+3 x \\ y \left (1\right ) &= 2 \\ \end{align*}

[_quadrature]

0.401

15571

\begin{align*} y^{\prime }&=x +\frac {1}{x} \\ y \left (1\right ) &= 2 \\ \end{align*}

[_quadrature]

0.418

15572

\begin{align*} y^{\prime }&=2 \sin \left (x \right ) \\ y \left (\pi \right ) &= 1 \\ \end{align*}

[_quadrature]

0.406

15573

\begin{align*} y^{\prime }&=x \sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_quadrature]

0.430

15574

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_quadrature]

0.427

15575

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.406

15576

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-1} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_quadrature]

0.484

15577

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.477

15578

\begin{align*} y^{\prime }&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.641

15579

\begin{align*} y^{\prime }&=\tan \left (x \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_quadrature]

0.416

15580

\begin{align*} y^{\prime }&=3 y \\ y \left (0\right ) &= -1 \\ \end{align*}

[_quadrature]

2.431

15581

\begin{align*} y^{\prime }&=1-y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.619

15582

\begin{align*} y^{\prime }&=1-y \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.702

15583

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x^{2}+y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.309

15584

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= 2 \\ \end{align*}

[_separable]

3.582

15585

\begin{align*} y^{\prime }&=\frac {2 x}{y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

10.917

15586

\begin{align*} y^{\prime }&=y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.586

15587

\begin{align*} y^{\prime }&=y x +x \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

2.190

15588

\begin{align*} x \,{\mathrm e}^{y}+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.731

15589

\begin{align*} y-x^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

4.720

15590

\begin{align*} 2 y y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.865

15591

\begin{align*} 2 y y^{\prime } x +y^{2}&=-1 \\ \end{align*}

[_separable]

2.520

15592

\begin{align*} y^{\prime }&=\frac {-y x +1}{x^{2}} \\ \end{align*}

[_linear]

1.961

15593

\begin{align*} y^{\prime }&=-\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.498

15594

\begin{align*} y^{\prime }&=\frac {y^{2}}{-y x +1} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.756

15595

\begin{align*} y^{\prime }&=4 y+1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.921

15596

\begin{align*} y^{\prime }&=y x +2 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

1.490

15597

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= 2 \\ \end{align*}

[_separable]

3.435

15598

\begin{align*} y^{\prime }&=\frac {y}{x -1}+x^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

2.017

15599

\begin{align*} y^{\prime }&=\frac {y}{x}+\sin \left (x^{2}\right ) \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_linear]

3.496

15600

\begin{align*} y^{\prime }&=\frac {2 y}{x}+{\mathrm e}^{x} \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_linear]

2.640