| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
5.969 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| \begin{align*}
{y^{\prime }}^{2}-9 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.821 |
|
| \begin{align*}
{y^{\prime }}^{2}&=x^{6} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime }-2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.345 |
|
| \begin{align*}
y^{\prime }+y&=x^{2}+2 x -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.186 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.102 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.000 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.539 |
|
| \begin{align*}
x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.140 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.921 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.777 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (1\right ) &= 0 \\
y \left (2\right ) &= -4 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
7.940 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (2\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
4.705 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -12 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
4.999 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y^{\prime }\left (1\right ) &= 3 \\
y^{\prime }\left (2\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
4.644 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (2\right ) &= 4 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
7.194 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
✗ |
✗ |
✓ |
5.155 |
|
| \begin{align*}
y^{\prime }&=1-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime }&=x -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime }&=1-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime }&=1+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.168 |
|
| \begin{align*}
y^{\prime }&=4-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.747 |
|
| \begin{align*}
y^{\prime }&=y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.453 |
|
| \begin{align*}
y^{\prime }&=-y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.323 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
8.280 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
7.029 |
|
| \begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| \begin{align*}
y^{\prime }&=y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.701 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.292 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| \begin{align*}
y^{\prime }&=x^{3}+y^{3} \\
\end{align*} |
[_Abel] |
✗ |
✗ |
✗ |
✗ |
1.540 |
|
| \begin{align*}
y^{\prime }&={| y|} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.383 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.110 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.779 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
9.755 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
2.586 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
2.984 |
|
| \begin{align*}
y^{\prime }&=\frac {y x}{x^{2}+y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.084 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.889 |
|
| \begin{align*}
y^{\prime }&=\ln \left (-1+y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\left (y+2\right ) \left (-1+y\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.180 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{-x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.161 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.328 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.427 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{1-y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.904 |
|
| \begin{align*}
y^{\prime }&=\left (y x \right )^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
68.642 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {y-4}{x}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.559 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{x}+y^{{1}/{4}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
21.805 |
|
| \begin{align*}
y^{\prime }&=4 y-5 \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.077 |
|
| \begin{align*}
y^{\prime }+3 y&=1 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.091 |
|
| \begin{align*}
y^{\prime }&=a y+b \\
y \left (c \right ) &= d \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
y^{\prime }&=x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime }&=y x +\frac {1}{x^{2}+1} \\
y \left (-5\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
7.562 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.406 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tan \left (x \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.978 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\
y \left (3\right ) &= 4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.444 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\
y \left (1\right ) &= -3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.921 |
|
| \begin{align*}
y^{\prime }&=\cot \left (x \right ) y+\csc \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.241 |
|
| \begin{align*}
y^{\prime }&=-x \sqrt {1-y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.523 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\
y \left (6\right ) &= -9 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
4.292 |
|
| \begin{align*}
y^{\prime }&=1+3 x \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime }&=x +\frac {1}{x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime }&=2 \sin \left (x \right ) \\
y \left (\pi \right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime }&=x \sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}-1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}-1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.641 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
y^{\prime }&=3 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.431 |
|
| \begin{align*}
y^{\prime }&=1-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
y^{\prime }&=1-y \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x^{2}+y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.309 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.582 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x}{y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.917 |
|
| \begin{align*}
y^{\prime }&=y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.586 |
|
| \begin{align*}
y^{\prime }&=y x +x \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.190 |
|
| \begin{align*}
x \,{\mathrm e}^{y}+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.731 |
|
| \begin{align*}
y-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.720 |
|
| \begin{align*}
2 y y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
2 y y^{\prime } x +y^{2}&=-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.520 |
|
| \begin{align*}
y^{\prime }&=\frac {-y x +1}{x^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.498 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{-y x +1} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.756 |
|
| \begin{align*}
y^{\prime }&=4 y+1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.921 |
|
| \begin{align*}
y^{\prime }&=y x +2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.435 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x -1}+x^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.017 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\sin \left (x^{2}\right ) \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.496 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}+{\mathrm e}^{x} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.640 |
|