2.2.163 Problems 16201 to 16300

Table 2.327: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16201

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

1.834

16202

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.304

16203

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.378

16204

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.379

16205

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.574

16206

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

2.016

16207

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

1.069

16208

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.837

16209

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1.068

16210

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

1.082

16211

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.346

16212

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.058

16213

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2.283

16214

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

2.289

16215

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

2.334

16216

\[ {}y^{\prime \prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

2.366

16217

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.083

16218

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1.084

16219

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.179

16220

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.174

16221

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.266

16222

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.518

16223

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.568

16224

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.388

16225

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.647

16226

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.628

16227

\[ {}y^{\prime \prime }+36 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.309

16228

\[ {}y^{\prime \prime }+100 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.144

16229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.495

16230

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.514

16231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.672

16232

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.760

16233

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.743

16234

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.184

16235

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.143

16236

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.747

16237

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.078

16238

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.179

16239

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

1.987

16240

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

1.243

16241

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.158

16242

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

2.639

16243

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.430

16244

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1.066

16245

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

1.065

16246

\[ {}y^{\prime \prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

2.375

16247

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.602

16248

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _missing_x]]

0.082

16249

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _missing_x]]

0.076

16250

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.154

16251

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

2.090

16252

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

[[_2nd_order, _with_linear_symmetries]]

1.286

16253

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

1.349

16254

\[ {}y^{\prime \prime }-y = 2 t -4 \]

[[_2nd_order, _with_linear_symmetries]]

1.270

16255

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.379

16256

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

2.226

16257

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.927

16258

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.169

16259

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.343

16260

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.485

16261

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

1.957

16262

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.467

16263

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

[[_2nd_order, _missing_x]]

1.205

16264

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

[[_2nd_order, _missing_x]]

1.234

16265

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

[[_2nd_order, _with_linear_symmetries]]

1.299

16266

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

[[_2nd_order, _with_linear_symmetries]]

1.378

16267

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

[[_2nd_order, _with_linear_symmetries]]

11.462

16268

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.790

16269

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.267

16270

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.451

16271

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

2.722

16272

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.389

16273

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.741

16274

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.749

16275

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.181

16276

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1.267

16277

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.487

16278

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.344

16279

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

2.195

16280

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

2.315

16281

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

2.340

16282

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

2.320

16283

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

2.559

16284

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

2.757

16285

\[ {}y^{\prime \prime }-y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

2.497

16286

\[ {}y^{\prime \prime }-4 y = 32 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.374

16287

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]
i.c.

[[_2nd_order, _missing_x]]

1.782

16288

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.782

16289

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

1.693

16290

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.681

16291

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]
i.c.

[[_2nd_order, _missing_x]]

3.270

16292

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

2.879

16293

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

1.996

16294

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

2.723

16295

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

2.391

16296

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

2.815

16297

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.815

16298

\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

57.293

16299

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.603

16300

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

1.259