2.2.168 Problems 16701 to 16800

Table 2.337: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

16701

ysin(x)+cos(x)y=1

[_linear]

16702

ycos(x)ysin(x)=sin(2x)
i.c.

[_linear]

16703

y+2xy=2xy2

[_separable]

16704

3xy2y2y3=x3

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16705

(x3+ey)y=3x2

[[_1st_order, _with_linear_symmetries]]

16706

y+3xy=yex2

[_separable]

16707

y2yex=2yex

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16708

2ln(x)y+yx=cos(x)y

[_Bernoulli]

16709

2ysin(x)+cos(x)y=y3sin(x)2

[_Bernoulli]

16710

(x2+y2+1)y+xy=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16711

ycos(x)y=y2cos(x)

[_separable]

16712

ytan(y)=excos(y)

[‘y=_G(x,y’)‘]

16713

y=y(ex+ln(y))

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16714

ycos(y)+sin(y)=x+1

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

16715

yy+1=(x1)ey22

[‘y=_G(x,y’)‘]

16716

y+sin(2y)x=2xex2cos(y)2

[‘y=_G(x,y’)‘]

16717

x(2x2+y2)+y(x2+2y2)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16718

3x2+6xy2+(6x2y+4y3)y=0

[_exact, _rational]

16719

xx2+y2+1x+1y+(yx2+y2+1yxy2)y=0

[_exact]

16720

3x2tan(y)2y3x3+(x3sec(y)2+4y3+3y2x2)y=0

[_exact]

16721

2x+x2+y2x2y=(x2+y2)yxy2

[[_homogeneous, ‘class D‘], _exact, _rational]

16722

sin(2x)y+x+(ysin(x)2y2)y=0

[_exact]

16723

3x22xy+(2yx+3y2)y=0

[_exact, _rational]

16724

xyx2+1+2xyyx+(x2+1+x2ln(x))y=0

[_separable]

16725

sin(y)+ysin(x)+1x+(xcos(y)cos(x)+1y)y=0

[_exact]

16726

y+sin(x)cos(xy)2cos(xy)2+(xcos(xy)2+sin(y))y=0

[_exact]

16727

2xy3+(y23x2)yy4=0
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16728

y(a2+x2+y2)y+x(x2+y2a2)=0

[_exact, _rational]

16729

3x2y+y3+(x3+3xy2)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16730

1x2y+x2(yx)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

16731

x2+yyx=0

[_linear]

16732

x+y22xyy=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16733

2x2y+2y+5+(2x3+2x)y=0

[_linear]

16734

x4ln(x)2xy3+3x2y2y=0

[_Bernoulli]

16735

x+sin(x)+sin(y)+ycos(y)=0

[‘y=_G(x,y’)‘]

16736

2xy23y3+(73xy2)y=0

[_rational]

16737

3y2x+(2y36xy)y=0

[[_homogeneous, ‘class G‘], _rational]

16738

x2+y2+12xyy=0

[_rational, _Bernoulli]

16739

xxy+(y+x2)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16740

4y29x=0

[_quadrature]

16741

y22yy=y2(1+e2x)

[_separable]

16742

y22yx8x2=0

[_quadrature]

16743

x2y2+3xyy+2y2=0

[_separable]

16744

y2(2x+y)y+x2+xy=0

[_quadrature]

16745

y3+(x+2)ey=0

[[_1st_order, _with_exponential_symmetries]]

16746

y3=yy2x2y+x2y

[_quadrature]

16747

y2yy+ex=0

[[_1st_order, _with_linear_symmetries]]

16748

y24yx+2y+2x2=0

[[_homogeneous, ‘class G‘]]

16749

y=y2ey

[_quadrature]

16750

y=eyy

[_quadrature]

16751

x=ln(y)+sin(y)

[_quadrature]

16752

x=y22y+2

[_quadrature]

16753

y=yln(y)

[_quadrature]

16754

y=(y1)ey

[_quadrature]

16755

xy2=e1y

[_quadrature]

16756

x(y2+1)3/2=a

[_quadrature]

16757

y2/5+y2/5=a2/5

[_quadrature]

16758

x=sin(y)+y

[_quadrature]

16759

y=y(1+ycos(y))

[_quadrature]

16760

y=arcsin(y)+ln(y2+1)

[_quadrature]

16761

y=2yx+ln(y)

[[_1st_order, _with_linear_symmetries], _dAlembert]

16762

y=x(y+1)+y2

[[_1st_order, _with_linear_symmetries], _dAlembert]

16763

y=2yx+sin(y)

[_dAlembert]

16764

y=xy21y

[_dAlembert]

16765

y=3yx2+ey

[_dAlembert]

16766

y=yx+ay2

[[_1st_order, _with_linear_symmetries], _Clairaut]

16767

y=yx+y2

[[_1st_order, _with_linear_symmetries], _Clairaut]

16768

xy2yyy+1=0

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16769

y=yx+ay2+1

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16770

x=yy+1y2

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

16771

exy+y22yex=1e2x

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16772

y+y22ysin(x)+sin(x)2cos(x)=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16773

yxy2+(2x+1)y=x2+2x

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

16774

x2y=1+xy+x2y2

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16775

y2(y2+1)4yy4x=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

16776

y24y=0

[_quadrature]

16777

y34xyy+8y2=0

[[_1st_order, _with_linear_symmetries]]

16778

y2y2=0

[_quadrature]

16779

y=y2/3+a

[_quadrature]

16780

(yx+y)2+3x5(yx2y)=0

[[_homogeneous, ‘class G‘]]

16781

y(y2yx)2=2y

[[_homogeneous, ‘class G‘], _rational]

16782

8y312y2=27y27x

[[_homogeneous, ‘class C‘], _dAlembert]

16783

(y1)2=y2

[_quadrature]

16784

y=y2yx+x

[[_1st_order, _with_linear_symmetries], _dAlembert]

16785

(yx+y)2=y2y

[[_homogeneous, ‘class A‘], _dAlembert]

16786

y2y2+y2=1

[_quadrature]

16787

y2yy+ex=0

[[_1st_order, _with_linear_symmetries]]

16788

3xy26yy+x+2y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16789

y=yx+a2y2+b2

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16790

y=(xy)2+1

[[_homogeneous, ‘class C‘], _Riccati]

16791

xsin(x)y+(sin(x)xcos(x))y=sin(x)cos(x)x

[_linear]

16792

y+cos(x)y=ynsin(2x)

[_Bernoulli]

16793

x33xy2+(y33x2y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16794

5xy4y26x2+(y28xy+5x22)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16795

3xy2x2+(3x2y6y21)y=0

[_exact, _rational]

16796

yxy2ln(x)+yx=0

[_Bernoulli]

16797

2xyex2xsin(x)+ex2y=0

[_linear]

16798

y=12xy2

[[_1st_order, _with_exponential_symmetries]]

16799

x2+yx=3x+y

[_quadrature]

16800

xyyy2=x4

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]