2.3.3 first order ode homogA

Table 2.337: first order ode homogA

#

ODE

CAS classification

Solved?

77

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

80

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

81

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

107

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

108

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

112

\[ {}x^{2} y^{\prime } = y x +x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

113

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

116

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

117

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

118

\[ {}y y^{\prime }+x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

181

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

186

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

189

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

708

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

711

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

712

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

731

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

736

\[ {}x^{2} y^{\prime } = y x +x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

737

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

740

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

742

\[ {}y y^{\prime }+x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

773

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

778

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

781

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1158

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1160

\[ {}y^{\prime } = \frac {4 y-3 x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1161

\[ {}y^{\prime } = -\frac {4 x +3 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1162

\[ {}y^{\prime } = \frac {x +3 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1163

\[ {}x^{2}+3 y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1194

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1198

\[ {}y^{\prime } = \frac {-a x +b y}{b x -c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1217

\[ {}3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1243

\[ {}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1540

\[ {}y^{\prime } x +3 y = 0 \]

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1597

\[ {}y y^{\prime }+x = 0 \]
i.c.

[_separable]

1615

\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1628

\[ {}x^{2} y^{\prime } = y^{2}+y x -x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

1646

\[ {}x^{2} y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1648

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 y x} \]

[[_homogeneous, ‘class A‘]]

1649

\[ {}y^{\prime } = \frac {y x +y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 y x -5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1662

\[ {}x^{2} y^{\prime } = y^{2}+y x -4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1663

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1664

\[ {}y^{\prime } = \frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1665

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1687

\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

2330

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2777

\[ {}y+y^{\prime } x = 0 \]

[_separable]

2784

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2795

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2797

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2805

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2806

\[ {}-y+y^{\prime } x = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2807

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2809

\[ {}y y^{\prime }+x = 2 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2810

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2811

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2812

\[ {}\left (y x -x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2813

\[ {}y+y^{\prime } x = 2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2814

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2815

\[ {}y \left (x^{2}-y x +y^{2}\right )+x y^{\prime } \left (x^{2}+y x +y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2816

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2817

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2818

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2819

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2820

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2821

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2822

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2823

\[ {}\left (3 y x -2 x^{2}\right ) y^{\prime } = 2 y^{2}-y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2824

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2825

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2826

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2847

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2848

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2852

\[ {}2 y x -\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2867

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2868

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2897

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2919

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2922

\[ {}x^{2} y^{\prime }+y^{2} = y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2938

\[ {}y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2939

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2947

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2952

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2954

\[ {}\left (3 x +4 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2959

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

2965

\[ {}y \sqrt {x^{2}+y^{2}}+y x = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

2969

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2974

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2978

\[ {}\left (-2 x^{2}-3 y x \right ) y^{\prime }+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2982

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2983

\[ {}3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2989

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3218

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3221

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3224

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3225

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3228

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3231

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3233

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3234

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3236

\[ {}y {y^{\prime }}^{2} = 3 y^{\prime } x +y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3239

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3241

\[ {}y+2 y^{\prime } x = {y^{\prime }}^{2} x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3244

\[ {}x +2 y y^{\prime } = {y^{\prime }}^{2} x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3245

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3247

\[ {}\left (1+{y^{\prime }}^{2}\right ) y = 2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3248

\[ {}2 x +{y^{\prime }}^{2} x = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3250

\[ {}4 {y^{\prime }}^{2} x +2 y^{\prime } x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3251

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3365

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3394

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

3400

\[ {}\left (-x +y\right ) y^{\prime }+2 x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3409

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3410

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3477

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3478

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3479

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3482

\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3483

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3484

\[ {}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3485

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3486

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3487

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3488

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3489

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3490

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3495

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3569

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3570

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3571

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3572

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3576

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3577

\[ {}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3578

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3579

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3580

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3581

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3582

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3583

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3584

\[ {}y^{\prime } = \frac {-2 x +4 y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3585

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3586

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3588

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3589

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3615

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3913

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3918

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3927

\[ {}y^{\prime } = \frac {2 x -y}{2 x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3933

\[ {}y y^{\prime } = x \]

[_separable]

3939

\[ {}y+y^{\prime } x = x \]

[_linear]

3966

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

3983

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3984

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3985

\[ {}x^{2} y^{\prime }-2 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3986

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \]

[[_homogeneous, ‘class A‘], _dAlembert]

3987

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

3997

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

4004

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4010

\[ {}\left (x +y\right ) y^{\prime } = -x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4020

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4024

\[ {}\left (y x -x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4033

\[ {}y^{2}-3 y x -2 x^{2} = \left (x^{2}-y x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4038

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

4043

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4057

\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4058

\[ {}-y+y^{\prime } x = x \cot \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4059

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4060

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4061

\[ {}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4062

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4063

\[ {}x^{2}-y x +y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4076

\[ {}2 y x +\left (x^{2}+2 y x +y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4090

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4129

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4142

\[ {}y^{\prime } x = y-{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4144

\[ {}2 \sqrt {y x}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4145

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4303

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

4312

\[ {}y^{\prime } x = a y \]

[_separable]

4314

\[ {}y^{\prime } x = a x +b y \]

[_linear]

4358

\[ {}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4360

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4361

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4365

\[ {}y^{\prime } x -y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4366

\[ {}y^{\prime } x = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4368

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4371

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4373

\[ {}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4374

\[ {}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4376

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4378

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4417

\[ {}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4420

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4421

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4422

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4498

\[ {}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4511

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4525

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4526

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4575

\[ {}y y^{\prime }+x = 0 \]

[_separable]

4578

\[ {}y y^{\prime }+a x +b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4592

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4593

\[ {}\left (x -y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4594

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4595

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4599

\[ {}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4604

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4611

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4620

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4621

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4622

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4641

\[ {}\left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4648

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4657

\[ {}\left (a x +b y\right ) y^{\prime }+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4658

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4659

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4660

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4663

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4666

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4667

\[ {}x y y^{\prime }+2 x^{2}-2 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4671

\[ {}x y y^{\prime }+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4672

\[ {}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4682

\[ {}x \left (x +y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4683

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4684

\[ {}x \left (x +y\right ) y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4685

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4686

\[ {}x \left (x +y\right ) y^{\prime }-y \left (x +y\right )+x \sqrt {x^{2}-y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4688

\[ {}x \left (2 x +y\right ) y^{\prime } = x^{2}+y x -y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4689

\[ {}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4698

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4699

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4703

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4704

\[ {}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4705

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4710

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4711

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4714

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4715

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4717

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4733

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4736

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 y x +2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4741

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4752

\[ {}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4753

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4754

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4755

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4756

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4761

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4770

\[ {}\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4771

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 y x +5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4773

\[ {}\left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime } = x^{2}-4 y x -2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4774

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4779

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4781

\[ {}\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4785

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4786

\[ {}\left (x^{2}+y x +a y^{2}\right ) y^{\prime } = a \,x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4787

\[ {}\left (a \,x^{2}+2 y x -a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4788

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4794

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4797

\[ {}x \left (x^{2}-y x +y^{2}\right ) y^{\prime }+\left (x^{2}+y x +y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4798

\[ {}x \left (x^{2}-y x -y^{2}\right ) y^{\prime } = \left (x^{2}+y x -y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4799

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4800

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4801

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4802

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4803

\[ {}x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4811

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4827

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4828

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4832

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4834

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4836

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4837

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4839

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4840

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4843

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4844

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4845

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4846

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4861

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4873

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

4875

\[ {}y^{\prime } \sqrt {y x}+x -y = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4876

\[ {}\left (x -2 \sqrt {y x}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4879

\[ {}\left (x -\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4881

\[ {}x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }+y \sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4882

\[ {}x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4888

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4988

\[ {}{y^{\prime }}^{2} x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4989

\[ {}{y^{\prime }}^{2} x +x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4994

\[ {}{y^{\prime }}^{2} x +y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4998

\[ {}{y^{\prime }}^{2} x -y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5000

\[ {}{y^{\prime }}^{2} x -y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5005

\[ {}{y^{\prime }}^{2} x -\left (3 x -y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5008

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5009

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5011

\[ {}{y^{\prime }}^{2} x -\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5013

\[ {}{y^{\prime }}^{2} x +a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5015

\[ {}{y^{\prime }}^{2} x +\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5021

\[ {}3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5025

\[ {}4 {y^{\prime }}^{2} x +2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5032

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5033

\[ {}x^{2} {y^{\prime }}^{2}+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5034

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5042

\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5045

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5047

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5049

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5051

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x +y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5052

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5064

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (1-a \right ) x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5065

\[ {}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5080

\[ {}y {y^{\prime }}^{2} = a^{2} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5082

\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5083

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5084

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5087

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5088

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5090

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5092

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5099

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

5100

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5101

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5104

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0 \]

[_separable]

5105

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5106

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5112

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5113

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

[_separable]

5115

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5121

\[ {}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5122

\[ {}\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5123

\[ {}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5124

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5125

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5128

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5129

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5130

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5133

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5139

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5195

\[ {}y {y^{\prime }}^{3}-3 y^{\prime } x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5197

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5229

\[ {}\sqrt {\left (a \,x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5249

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5254

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5265

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5266

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5268

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5269

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5294

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5295

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5296

\[ {}y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5313

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5323

\[ {}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5329

\[ {}y-2 y^{\prime } x = {y^{\prime }}^{2} x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5331

\[ {}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5332

\[ {}\left (x +\sqrt {y^{2}-y x}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5333

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5334

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5335

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5336

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5337

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5338

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5339

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5340

\[ {}{\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5341

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5342

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5343

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5344

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5425

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5434

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5448

\[ {}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5453

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5454

\[ {}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5456

\[ {}x^{2} y^{\prime }+y^{2}+y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5466

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5467

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5468

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5470

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5472

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5587

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5685

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5686

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5687

\[ {}y x +\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5688

\[ {}y^{2}-y x +\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5690

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

5784

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5792

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

5985

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5996

\[ {}\left (-x +2 y\right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5997

\[ {}y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5998

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5999

\[ {}y-3 x +\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6000

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6018

\[ {}x^{2}-2 y x +5 y^{2} = \left (x^{2}+2 y x +y^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6022

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}+2 y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6025

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6028

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6029

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6130

\[ {}y^{\prime } x = 2 y \]

[_separable]

6131

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6133

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6140

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6142

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6145

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6147

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6151

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6155

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6158

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6160

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6161

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6176

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6177

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6178

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6227

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6229

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6231

\[ {}8 y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6236

\[ {}{y^{\prime }}^{2} x -y y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6241

\[ {}y {y^{\prime }}^{2}-y^{\prime } x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6244

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6245

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6251

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (y y^{\prime }+x \right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

6634

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

6639

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

6653

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6656

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6657

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6658

\[ {}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6659

\[ {}y^{\prime } x = y-{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

6660

\[ {}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6661

\[ {}y^{\prime } x = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6662

\[ {}y+\sqrt {y x}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6664

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6665

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6666

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6667

\[ {}y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6668

\[ {}x^{2}+y x +y^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6669

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6670

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6671

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6672

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6673

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6674

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6676

\[ {}\left (y+y^{\prime } x \right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

6677

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

6679

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6680

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

6681

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6682

\[ {}y^{\prime } x = x +\frac {y}{2} \]
i.c.

[_linear]

6713

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6741

\[ {}y^{\prime } x -2 \sqrt {y x} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

6745

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6746

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6791

\[ {}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_separable]

6796

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6797

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6800

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6968

\[ {}y y^{\prime } = x \]

[_separable]

6975

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6976

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6977

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6978

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7010

\[ {}y^{\prime } x = 2 y \]

[_separable]

7017

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7018

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7020

\[ {}y^{\prime } = \frac {y^{2}}{y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7043

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7090

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

7107

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7108

\[ {}x^{2} y^{\prime }-3 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7109

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7110

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7111

\[ {}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7112

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7113

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

7114

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7115

\[ {}x^{2} y^{\prime } = y^{2}+2 y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7116

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7125

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7126

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7127

\[ {}y^{\prime } = \frac {x^{2}-y x}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7128

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7153

\[ {}y+y^{\prime } x = x \]

[_linear]

7157

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7158

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7159

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

7165

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7166

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7671

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

7672

\[ {}{y^{\prime }}^{2} x -\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

7673

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

7679

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7680

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7682

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

7683

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7685

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7686

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7687

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7690

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7706

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7770

\[ {}6 {y^{\prime }}^{2} x -\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

7775

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

7786

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

7789

\[ {}{y^{\prime }}^{2} x +\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

7790

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7937

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7960

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

7961

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

7970

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7978

\[ {}y^{\prime } = \frac {5 x^{2}-y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7987

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7992

\[ {}y = {y^{\prime }}^{2} x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8122

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8271

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9349

\[ {}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9352

\[ {}y^{\prime } x -{\mathrm e}^{\frac {y}{x}} x -y-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9358

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9359

\[ {}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9360

\[ {}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9371

\[ {}x^{2} y^{\prime }+y^{2}+y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9372

\[ {}x^{2} y^{\prime }-y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9373

\[ {}x^{2} y^{\prime }-y^{2}-y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9402

\[ {}3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9439

\[ {}y y^{\prime }+a y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9446

\[ {}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9458

\[ {}\left (-x +2 y\right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9467

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9474

\[ {}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9476

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9481

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9497

\[ {}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

9506

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9507

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9511

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9516

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9519

\[ {}\left (x^{2}+4 y^{2}\right ) y^{\prime }-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9520

\[ {}\left (4 y^{2}+2 y x +3 x^{2}\right ) y^{\prime }+y^{2}+6 y x +2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9525

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9530

\[ {}x \left (y^{2}+y x -x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9532

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9541

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9543

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9545

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9546

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9550

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9560

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9561

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9572

\[ {}\left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9573

\[ {}\left (y \sqrt {x^{2}+y^{2}}+\left (y^{2}-x^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {x^{2}+y^{2}}+2 x y \sin \left (\alpha \right )+\left (y^{2}-x^{2}\right ) \cos \left (\alpha \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9584

\[ {}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘]]

9598

\[ {}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9599

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9641

\[ {}{y^{\prime }}^{2} x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9642

\[ {}{y^{\prime }}^{2} x +x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9645

\[ {}{y^{\prime }}^{2} x +y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9650

\[ {}{y^{\prime }}^{2} x +\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9652

\[ {}{y^{\prime }}^{2} x -y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9653

\[ {}{y^{\prime }}^{2} x +2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9655

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9656

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9657

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9658

\[ {}{y^{\prime }}^{2} x +a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9672

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

9674

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

9677

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9686

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9687

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9697

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9698

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9699

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9700

\[ {}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9701

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9702

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9704

\[ {}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0 \]

[_quadrature]

9705

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9708

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9714

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

9716

\[ {}\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9717

\[ {}\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9727

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9728

\[ {}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9730

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9732

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9738

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

9749

\[ {}\left (x^{2}+y^{2}\right ) f \left (\frac {x}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

9750

\[ {}\left (x^{2}+y^{2}\right ) f \left (\frac {y}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

9773

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

9790

\[ {}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9791

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9792

\[ {}y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11228

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

12021

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12022

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12023

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

12029

\[ {}{\mathrm e}^{\frac {y}{x}} x +y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12030

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12031

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12032

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12033

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12034

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12052

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12054

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12056

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12057

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12060

\[ {}3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12064

\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12067

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12075

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12077

\[ {}-y+y^{\prime } x = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12078

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12091

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12094

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12097

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12099

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12105

\[ {}4 {y^{\prime }}^{2} x +2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12106

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12110

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12111

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12112

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12119

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12121

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12126

\[ {}3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12135

\[ {}{y^{\prime }}^{2} x -2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12247

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12248

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12253

\[ {}2 t x^{\prime } = x \]

[_separable]

12292

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12295

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12322

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12325

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12328

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12332

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12472

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12494

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12510

\[ {}y^{2}+2 y x -x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12520

\[ {}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12521

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12522

\[ {}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12523

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12524

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12525

\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12529

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12530

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12531

\[ {}3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12532

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12533

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12534

\[ {}x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12535

\[ {}2 x^{2}+2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12577

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12580

\[ {}2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

12583

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12586

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12587

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12592

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12596

\[ {}x^{2} y^{\prime }+y x = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12887

\[ {}y^{\prime } x = k y \]

[_separable]

12909

\[ {}y x +y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

12910

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{x t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13019

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

13022

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13039

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13051

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13057

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13318

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13337

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13338

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

13339

\[ {}x +y+\left (-x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13341

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13342

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13344

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13345

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y+y^{\prime } x \right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

13349

\[ {}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

13350

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

13352

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13373

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

13374

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13375

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13380

\[ {}y = y {y^{\prime }}^{2}+2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13386

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

13438

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13442

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

13480

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

13488

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

13525

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

13533

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13536

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13540

\[ {}y^{\prime } = \frac {y}{-x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13574

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

13582

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13591

\[ {}x -y y^{\prime } = 0 \]

[_separable]

13626

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13627

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13628

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13629

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13631

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13771

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

13904

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

13912

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

14145

\[ {}y y^{\prime } = 2 x \]

[_separable]

14207

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14213

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14278

\[ {}x^{2} y^{\prime }-y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14279

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14280

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14281

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14283

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14286

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14291

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14292

\[ {}\left (2 y x +2 x^{2}\right ) y^{\prime } = x^{2}+2 y x +2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14296

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14304

\[ {}2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14308

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14326

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14330

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14342

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14344

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14345

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14351

\[ {}x y y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14951

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14964

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

14966

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

14995

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15012

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15054

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15101

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15133

\[ {}t y^{\prime }+y = t \]

[_linear]

15187

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15188

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15190

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15194

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15197

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15198

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15201

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15204

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15213

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15214

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15215

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15227

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15230

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15238

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15239

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15247

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15250

\[ {}\cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15251

\[ {}y \ln \left (\frac {t}{y}\right )+\frac {t^{2} y^{\prime }}{y+t} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15253

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15256

\[ {}2 t +\left (y-3 t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15257

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

15258

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15259

\[ {}t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15260

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15261

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15263

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15264

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15266

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15267

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15268

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15269

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15270

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15271

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

15274

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15276

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15277

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15278

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15279

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15296

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15297

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15298

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15308

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15309

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15311

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15312

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15313

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15827

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15851

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15855

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

15864

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

15899

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15901

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15902

\[ {}x^{2} y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

15903

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15904

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

15905

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15906

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15939

\[ {}y+y^{\prime } x = 2 x \]

[_linear]

15943

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15956

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15966

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15968

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15982

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16024

\[ {}\left (y+y^{\prime } x \right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

16027

\[ {}3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16032

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16033

\[ {}5 y x -4 y^{2}-6 x^{2}+\left (y^{2}-8 y x +\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16040

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16046

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16047

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]