2.2.169 Problems 16801 to 16900

Table 2.339: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16801

3xy2x2+(3x2y6y21)y=0

[_exact, _rational]

1.630

16802

yxy2ln(x)+yx=0

[_Bernoulli]

2.216

16803

2xyex2xsin(x)+ex2y=0

[_linear]

2.505

16804

y=12xy2

[[_1st_order, _with_exponential_symmetries]]

1.002

16805

x2+yx=3x+y

[_quadrature]

0.396

16806

xyyy2=x4

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.161

16807

1x2xy+y2=y2y2xy

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.201

16808

(2x1)y2y=14xx2

[_linear]

1.039

16809

xy+3+(3x+y+1)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.368

16810

y+cos(x2+y2)=cos(x2y2)

[_separable]

4.979

16811

y(3x22x)y(6x2)=0

[_separable]

1.158

16812

xy2yy3=x43

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.676

16813

1+exy+exy(1xy)y=0
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5.042

16814

x2+y2xyy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.350

16815

xy+2+(xy+3)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.815

16816

y+xy2yx=0

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.764

16817

2yy+2x+x2+y2=0

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.316

16818

(x1)(y2y+1)=(1+y)(x2+x+1)y

[_separable]

2.229

16819

(x2xyy2)y+y2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.942

16820

cos(x)y+(2ysin(x))y=0

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.232

16821

y1=ex+2y

[[_homogeneous, ‘class C‘], _dAlembert]

2.275

16822

2x5+4x3y2xy2+(y2+2x2yx4)y=0

[[_homogeneous, ‘class G‘], _rational]

4.590

16823

x2yny=2yxy

[[_homogeneous, ‘class G‘], _rational]

1.839

16824

(3x+3y+a2)y=4x+4y+b2

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.003

16825

xy2+2xyy=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.051

16826

yx+y=y2ln(x)
i.c.

[_Bernoulli]

2.570

16827

sin(ln(x))cos(ln(y))y=0

[_separable]

2.552

16828

y=9y26y+2x22x+5

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.299

16829

(5x7y+1)y+x+y1=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.609

16830

x+y+1+(2x+2y1)y=0
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.073

16831

y3+2(x2xy2)y=0

[[_homogeneous, ‘class G‘], _rational]

2.055

16832

y=2(y+2)2(x+y1)2

[[_homogeneous, ‘class C‘], _rational]

1.861

16833

4x2y2y2=xy3

[[_homogeneous, ‘class G‘]]

2.454

16834

y+xy2y=0

[_rational, _dAlembert]

1.154

16835

y+y=2cos(x)+2sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.886

16836

xy=2

[[_3rd_order, _quadrature]]

1.034

16837

y=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.505

16838

(x1)y=1

[[_2nd_order, _quadrature]]

0.725

16839

y4=1

[_quadrature]

0.508

16840

y+y=0

[[_2nd_order, _missing_x]]

1.267

16841

y3y+2y=2

[[_2nd_order, _missing_x]]

0.477

16842

y=(1+y2)3/2

[[_2nd_order, _missing_x]]

2.425

16843

yy+y2=1

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.612

16844

y=x

[[_high_order, _quadrature]]

0.135

16845

y=x+cos(x)

[[_3rd_order, _quadrature]]

0.186

16846

y(x+2)5=1
i.c.

[[_2nd_order, _quadrature]]

0.725

16847

y=xex
i.c.

[[_2nd_order, _quadrature]]

1.324

16848

y=2xln(x)

[[_2nd_order, _quadrature]]

1.030

16849

xy=y

[[_2nd_order, _missing_y]]

1.000

16850

xy+y=0

[[_2nd_order, _missing_y]]

0.827

16851

xy=(2x2+1)y

[[_2nd_order, _missing_y]]

0.819

16852

xy=y+x2

[[_2nd_order, _missing_y]]

0.941

16853

xln(x)y=y

[[_2nd_order, _missing_y]]

0.536

16854

xy=yln(yx)

[_separable]

2.619

16855

2y=yx+x2y
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

527.245

16856

y=1y2

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

4.847

16857

xyy=0

[[_3rd_order, _missing_y]]

1.207

16858

y=1+y2

[[_2nd_order, _missing_x]]

3.559

16859

y=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.544

16860

y=1y2

[[_2nd_order, _missing_x]]

4.708

16861

y=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.540

16862

y=y+1

[[_2nd_order, _missing_x]]

1.368

16863

y=yln(y)
i.c.

[[_2nd_order, _missing_x]]

0.617

16864

y+y+2=0
i.c.

[[_2nd_order, _missing_x]]

1.243

16865

y=y(y+1)

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.194

16866

3y=(1+y2)3/2

[[_2nd_order, _missing_x]]

1.900

16867

y+y2=0

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.646

16868

yy=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.496

16869

y=2yy
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15.761

16870

3yy=2y
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.446

16871

2y=3y2
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.495

16872

yy+y2=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.248

16873

yy=y2+y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.523

16874

yy=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.694

16875

2yy=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.389

16876

y3y=1
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.300

16877

yyy2=y2y

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.741

16878

y=e2y
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.603

16879

2yy3y2=4y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.681

16880

y=3yy
i.c.

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.082

16881

yy=0

[[_2nd_order, _missing_x]]

1.514

16882

3y2y8y=0

[[_2nd_order, _missing_x]]

0.356

16883

y3y+3yy=0
i.c.

[[_3rd_order, _missing_x]]

0.137

16884

y+2y+y=0

[[_2nd_order, _missing_x]]

0.374

16885

y4y+3y=0
i.c.

[[_2nd_order, _missing_x]]

0.591

16886

y+6y+11y+6y=0

[[_3rd_order, _missing_x]]

0.078

16887

y2y2y=0

[[_2nd_order, _missing_x]]

0.422

16888

y(6)+2y(5)+y=0

[[_high_order, _missing_x]]

0.088

16889

4y8y+5y=0

[[_2nd_order, _missing_x]]

0.453

16890

y8y=0

[[_3rd_order, _missing_x]]

0.089

16891

y+4y+10y+12y+5y=0

[[_high_order, _missing_x]]

0.083

16892

y2y+2y=0
i.c.

[[_2nd_order, _missing_x]]

0.728

16893

y2y+3y=0
i.c.

[[_2nd_order, _missing_x]]

0.868

16894

y+2y+4y2y5y=0

[[_high_order, _missing_x]]

0.085

16895

y(5)+4y+5y6y4y=0

[[_high_order, _missing_x]]

0.096

16896

y+2yy2y=0

[[_3rd_order, _missing_x]]

0.080

16897

y2y+2y=0

[[_3rd_order, _missing_x]]

0.087

16898

yy=0

[[_high_order, _missing_x]]

0.088

16899

y(5)=0

[[_high_order, _quadrature]]

0.074

16900

y3y2y=0

[[_3rd_order, _missing_x]]

0.086