2.2.169 Problems 16801 to 16900

Table 2.339: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16801

\[ {}\left (x +1\right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.283

16802

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.487

16803

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3.887

16804

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.319

16805

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.770

16806

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

2.262

16807

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.227

16808

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.687

16809

\[ {}\left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y = 6 \ln \left (x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.645

16810

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-3 \left (-2+x \right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.584

16811

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.141

16812

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

1.333

16813

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

1.578

16814

\[ {}x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.332

16815

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.383

16816

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.415

16817

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.411

16818

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.394

16819

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.447

16820

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

16821

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.452

16822

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = x \,{\mathrm e}^{2 x}-1 \]

[[_2nd_order, _with_linear_symmetries]]

0.747

16823

\[ {}x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.434

16824

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.681

16825

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

1.678

16826

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.002

16827

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.925

16828

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.916

16829

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.671

16830

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.952

16831

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

2.508

16832

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

[[_3rd_order, _missing_y]]

0.245

16833

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

1.201

16834

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

2.314

16835

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

[[_2nd_order, _missing_y]]

1.011

16836

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

1.184

16837

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[[_2nd_order, _missing_y]]

1.316

16838

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.744

16839

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {6+x}{x^{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

52.590

16840

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

1.716

16841

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (x -1\right )^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.807

16842

\[ {}2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.914

16843

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.707

16844

\[ {}x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.734

16845

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.509

16846

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

2.174

16847

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

1.878

16848

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

0.857

16849

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

[[_2nd_order, _missing_x]]

0.894

16850

\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

[[_2nd_order, _missing_x]]

0.497

16851

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.594

16852

\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

[[_2nd_order, _missing_x]]

0.839

16853

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.468

16854

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.608

16855

\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

[[_2nd_order, _missing_x]]

0.504

16856

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.724

16857

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.615

16858

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.461

16859

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.480

16860

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.075

16861

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.827

16862

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.372

16863

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.323

16864

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.721

16865

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

6.934

16866

\[ {}y^{\prime \prime }+y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

1.987

16867

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.867

16868

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.730

16869

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.163

16870

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.172

16871

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.909

16872

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

0.216

16873

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]
i.c.

[[_high_order, _missing_y]]

0.244

16874

\[ {}y^{\prime } = 1-x y \]
i.c.

[_linear]

0.562

16875

\[ {}y^{\prime } = \frac {y-x}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.252

16876

\[ {}y^{\prime } = y \sin \left (x \right ) \]
i.c.

[_separable]

0.718

16877

\[ {}y^{\prime \prime }+x y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.480

16878

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.700

16879

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.988

16880

\[ {}\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

35.693

16881

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c.

[NONE]

0.007

16882

\[ {}y^{\prime }-2 x y = 0 \]
i.c.

[_separable]

0.557

16883

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.518

16884

\[ {}y^{\prime \prime }-x y^{\prime }+y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.517

16885

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.519

16886

\[ {}y^{\prime \prime } = x^{2} y-y^{\prime } \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.543

16887

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.655

16888

\[ {}y^{\prime } = {\mathrm e}^{y}+x y \]
i.c.

[‘y=_G(x,y’)‘]

0.336

16889

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.893

16890

\[ {}\left (x +1\right ) y^{\prime }-n y = 0 \]

[_separable]

0.585

16891

\[ {}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[_Jacobi]

0.899

16892

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.131

16893

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.836

16894

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.940

16895

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

16896

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.385

16897

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.370

16898

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.973

16899

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.956

16900

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.008