2.2.160 Problems 15901 to 16000

Table 2.333: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15901

\begin{align*} y^{\prime }&=-3 y+4 \cos \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.789

15902

\begin{align*} y^{\prime }&=2 y+\sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.678

15903

\begin{align*} y^{\prime }&=3 y-4 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.027

15904

\begin{align*} y^{\prime }&=\frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_linear, ‘class A‘]]

1.108

15905

\begin{align*} y^{\prime }+2 y&={\mathrm e}^{\frac {t}{3}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.329

15906

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 10 \\ \end{align*}

[[_linear, ‘class A‘]]

1.340

15907

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}

[[_linear, ‘class A‘]]

1.728

15908

\begin{align*} 3 y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.763

15909

\begin{align*} -2 y+y^{\prime }&=7 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_linear, ‘class A‘]]

1.217

15910

\begin{align*} y^{\prime }+2 y&=3 t^{2}+2 t -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.759

15911

\begin{align*} y^{\prime }+2 y&=t^{2}+2 t +1+{\mathrm e}^{4 t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.510

15912

\begin{align*} y+y^{\prime }&=t^{3}+\sin \left (3 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.792

15913

\begin{align*} y^{\prime }-3 y&=2 t -{\mathrm e}^{4 t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.009

15914

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.278

15915

\begin{align*} y^{\prime }&=-\frac {y}{t}+2 \\ \end{align*}

[_linear]

2.841

15916

\begin{align*} y^{\prime }&=\frac {3 y}{t}+t^{5} \\ \end{align*}

[_linear]

2.235

15917

\begin{align*} y^{\prime }&=-\frac {y}{1+t}+t^{2} \\ \end{align*}

[_linear]

2.248

15918

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

2.199

15919

\begin{align*} y^{\prime }-\frac {2 t y}{t^{2}+1}&=3 \\ \end{align*}

[_linear]

2.021

15920

\begin{align*} y^{\prime }-\frac {2 y}{t}&=t^{3} {\mathrm e}^{t} \\ \end{align*}

[_linear]

2.328

15921

\begin{align*} y^{\prime }&=-\frac {y}{1+t}+2 \\ y \left (0\right ) &= 3 \\ \end{align*}

[_linear]

2.508

15922

\begin{align*} y^{\prime }&=\frac {y}{1+t}+4 t^{2}+4 t \\ y \left (1\right ) &= 10 \\ \end{align*}

[_linear]

1.985

15923

\begin{align*} y^{\prime }&=-\frac {y}{t}+2 \\ y \left (1\right ) &= 3 \\ \end{align*}

[_linear]

3.244

15924

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ y \left (0\right ) &= 3 \\ \end{align*}

[_linear]

2.283

15925

\begin{align*} y^{\prime }-\frac {2 y}{t}&=2 t^{2} \\ y \left (-2\right ) &= 4 \\ \end{align*}

[_linear]

1.451

15926

\begin{align*} y^{\prime }-\frac {3 y}{t}&=2 t^{3} {\mathrm e}^{2 t} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

4.046

15927

\begin{align*} y^{\prime }&=\sin \left (t \right ) y+4 \\ \end{align*}

[_linear]

1.676

15928

\begin{align*} y^{\prime }&=t^{2} y+4 \\ \end{align*}

[_linear]

1.408

15929

\begin{align*} y^{\prime }&=\frac {y}{t^{2}}+4 \cos \left (t \right ) \\ \end{align*}

[_linear]

1.952

15930

\begin{align*} y^{\prime }&=y+4 \cos \left (t^{2}\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.873

15931

\begin{align*} y^{\prime }&=-{\mathrm e}^{-t^{2}} y+\cos \left (t \right ) \\ \end{align*}

[_linear]

2.577

15932

\begin{align*} y^{\prime }&=\frac {y}{\sqrt {t^{3}-3}}+t \\ \end{align*}

[_linear]

42.987

15933

\begin{align*} y^{\prime }&=a t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

1.747

15934

\begin{align*} y^{\prime }&=t^{r} y+4 \\ \end{align*}

[_linear]

1.725

15935

\begin{align*} v^{\prime }+\frac {2 v}{5}&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.765

15936

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

2.097

15937

\begin{align*} y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.020

15938

\begin{align*} y^{\prime }&=3 y \\ \end{align*}

[_quadrature]

0.644

15939

\begin{align*} y^{\prime }&=t^{2} \left (t^{2}+1\right ) \\ \end{align*}

[_quadrature]

0.220

15940

\begin{align*} y^{\prime }&=-\sin \left (y\right )^{5} \\ \end{align*}

[_quadrature]

21.019

15941

\begin{align*} y^{\prime }&=\frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \\ \end{align*}

[_separable]

4.385

15942

\begin{align*} y^{\prime }&=\sin \left (y\right )^{2} \\ \end{align*}

[_quadrature]

1.575

15943

\begin{align*} y^{\prime }&=\left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

[‘x=_G(y,y’)‘]

11.931

15944

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.122

15945

\begin{align*} y^{\prime }&=3-2 y \\ \end{align*}

[_quadrature]

0.438

15946

\begin{align*} y^{\prime }&=t y \\ \end{align*}

[_separable]

1.706

15947

\begin{align*} y^{\prime }&=3 y+{\mathrm e}^{7 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.132

15948

\begin{align*} y^{\prime }&=\frac {t y}{t^{2}+1} \\ \end{align*}

[_separable]

1.731

15949

\begin{align*} y^{\prime }&=-5 y+\sin \left (3 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.638

15950

\begin{align*} y^{\prime }&=t +\frac {2 y}{1+t} \\ \end{align*}

[_linear]

1.651

15951

\begin{align*} y^{\prime }&=3+y^{2} \\ \end{align*}

[_quadrature]

2.552

15952

\begin{align*} y^{\prime }&=2 y-y^{2} \\ \end{align*}

[_quadrature]

0.900

15953

\begin{align*} y^{\prime }&=-3 y+{\mathrm e}^{-2 t}+t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

2.635

15954

\begin{align*} x^{\prime }&=-t x \\ x \left (0\right ) &= {\mathrm e} \\ \end{align*}

[_separable]

2.045

15955

\begin{align*} y^{\prime }&=2 y+\cos \left (4 t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.900

15956

\begin{align*} y^{\prime }&=3 y+2 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.261

15957

\begin{align*} y^{\prime }&=t^{2} y^{3}+y^{3} \\ y \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

[_separable]

3.077

15958

\begin{align*} y^{\prime }+5 y&=3 \,{\mathrm e}^{-5 t} \\ y \left (0\right ) &= -2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.301

15959

\begin{align*} y^{\prime }&=2 t y+3 t \,{\mathrm e}^{t^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

4.516

15960

\begin{align*} y^{\prime }&=\frac {\left (1+t \right )^{2}}{\left (1+y\right )^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

6.730

15961

\begin{align*} y^{\prime }&=2 t y^{2}+3 t^{2} y^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

[_separable]

2.633

15962

\begin{align*} y^{\prime }&=1-y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

2.428

15963

\begin{align*} y^{\prime }&=\frac {t^{2}}{y+t^{3} y} \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

2.193

15964

\begin{align*} y^{\prime }&=y^{2}-2 y+1 \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.405

15965

\begin{align*} y^{\prime }&=\left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \\ \end{align*}

[_Riccati]

4.827

15966

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\ \end{align*}

[_Abel]

7.580

15967

\begin{align*} y^{\prime }&=t^{2} y+1+y+t^{2} \\ \end{align*}

[_separable]

2.270

15968

\begin{align*} y^{\prime }&=\frac {2 y+1}{t} \\ \end{align*}

[_separable]

2.607

15969

\begin{align*} y^{\prime }&=3-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.778

15970

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.249

15971

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.294

15972

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.250

15973

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-y \\ \end{align*}

system_of_ODEs

0.328

15974

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.508

15975

\begin{align*} x^{\prime }&=3 y \\ y^{\prime }&=3 \pi y-\frac {x}{3} \\ \end{align*}

system_of_ODEs

0.689

15976

\begin{align*} p^{\prime }&=3 p-2 q-7 r \\ q^{\prime }&=-2 p+6 r \\ r^{\prime }&=\frac {73 q}{100}+2 r \\ \end{align*}

system_of_ODEs

64.126

15977

\begin{align*} x^{\prime }&=-3 x+2 \pi y \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.641

15978

\begin{align*} x^{\prime }&=\beta y \\ y^{\prime }&=\gamma x-y \\ \end{align*}

system_of_ODEs

0.616

15979

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.392

15980

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.331

15981

\begin{align*} x^{\prime }&=-2 x-y \\ y^{\prime }&=2 x-5 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.394

15982

\begin{align*} x^{\prime }&=-2 x-3 y \\ y^{\prime }&=3 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.411

15983

\begin{align*} x^{\prime }&=2 x+3 y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.391

15984

\begin{align*} x^{\prime }&=1 \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.374

15985

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=-2 y \\ \end{align*}

system_of_ODEs

0.279

15986

\begin{align*} x^{\prime }&=-4 x-2 y \\ y^{\prime }&=-x-3 y \\ \end{align*}

system_of_ODEs

0.358

15987

\begin{align*} x^{\prime }&=-5 x-2 y \\ y^{\prime }&=-x-4 y \\ \end{align*}

system_of_ODEs

0.353

15988

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+4 y \\ \end{align*}

system_of_ODEs

0.291

15989

\begin{align*} x^{\prime }&=-\frac {x}{2} \\ y^{\prime }&=x-\frac {y}{2} \\ \end{align*}

system_of_ODEs

0.266

15990

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=9 x \\ \end{align*}

system_of_ODEs

0.372

15991

\begin{align*} x^{\prime }&=3 x+4 y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.354

15992

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.484

15993

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.434

15994

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=x-4 y \\ \end{align*}

system_of_ODEs

0.351

15995

\begin{align*} x^{\prime }&=-2 x-2 y \\ y^{\prime }&=-2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.393

15996

\begin{align*} x^{\prime }&=-2 x-2 y \\ y^{\prime }&=-2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.383

15997

\begin{align*} x^{\prime }&=-2 x-2 y \\ y^{\prime }&=-2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.366

15998

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.352

15999

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.335

16000

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.352