2.3.2 first order ode separable

Table 2.335: first order ode separable

#

ODE

CAS classification

Solved?

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

28

\[ {}y^{\prime } = x \ln \left (y\right ) \]
i.c.

[_separable]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

41

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

45

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

48

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

54

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

55

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

56

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

61

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

68

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

83

\[ {}y^{\prime } x +y = 3 y x \]
i.c.

[_separable]

87

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

92

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

183

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

213

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

677

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

681

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

703

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

714

\[ {}y^{\prime } x +y = 3 y x \]
i.c.

[_separable]

718

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

723

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

775

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

805

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1132

\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \]

[_separable]

1133

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \]

[_separable]

1134

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1136

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1145

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \]
i.c.

[_separable]

1146

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

1147

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1149

\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \]
i.c.

[_separable]

1150

\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1152

\[ {}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

1153

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1172

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1173

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1207

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1219

\[ {}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \]

[_separable]

1221

\[ {}y^{\prime } = 3-6 x +y-2 y x \]

[_separable]

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{-2+y} = 0 \]

[_separable]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

1521

\[ {}y^{\prime }+2 y x = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (-1+y^{2}\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}3 y+y^{\prime } x = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1569

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

[_separable]

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

1582

\[ {}x^{2} y y^{\prime } = \left (-1+y^{2}\right )^{{3}/{2}} \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (-2+y\right ) \]

[_separable]

1586

\[ {}\left (-1+y\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]
i.c.

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (-1+y\right ) \left (-2+y\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1597

\[ {}x +y y^{\prime } = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (-2+y\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1601

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

1613

\[ {}y^{\prime } = 2 y x \]

[_separable]

1617

\[ {}y^{\prime } = x \left (-1+y^{2}\right )^{{2}/{3}} \]

[_separable]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1622

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1623

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1636

\[ {}y^{\prime }-y x = x y^{{3}/{2}} \]
i.c.

[_separable]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1722

\[ {}x^{2} y+4 y x +2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime } = 0 \]

[_separable]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2329

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2774

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

2775

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2776

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2777

\[ {}y^{\prime } x +y = 0 \]

[_separable]

2778

\[ {}y^{\prime } = 2 y x \]

[_separable]

2779

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2780

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2781

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2782

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

[_separable]

2783

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2784

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2786

\[ {}y^{\prime } x +y = y^{2} \]

[_separable]

2787

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

2788

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

2789

\[ {}y^{\prime } x +y = x y \left (y^{\prime }-1\right ) \]

[_separable]

2790

\[ {}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2791

\[ {}y = y x +x^{2} y^{\prime } \]

[_separable]

2792

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2793

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2794

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2795

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2796

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2797

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2800

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2802

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2803

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

2858

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2872

\[ {}\left (x -2 y x \right ) y^{\prime }+2 y = 0 \]

[_separable]

2886

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2924

\[ {}y^{\prime }-y x = \frac {x}{y} \]

[_separable]

2926

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2929

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

2937

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

2944

\[ {}6+2 y = x y y^{\prime } \]

[_separable]

2948

\[ {}y-y^{\prime } x = 2 y^{2}+2 y^{\prime } \]

[_separable]

2949

\[ {}\tan \left (y\right ) = \left (4+3 x \right ) y^{\prime } \]

[_separable]

2953

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

2957

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

2961

\[ {}3 x -6 = x y y^{\prime } \]

[_separable]

2964

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

2966

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

2973

\[ {}x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]
i.c.

[_separable]

2975

\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]
i.c.

[_separable]

2985

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2990

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3218

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3224

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3226

\[ {}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3229

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

3267

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3342

\[ {}y^{\prime } = y x \]

[_separable]

3343

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3344

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3345

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

3346

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

3360

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3364

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3365

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3371

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3384

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3390

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3391

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3392

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3403

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

3406

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3448

\[ {}y^{\prime } = 2 y x \]

[_separable]

3449

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3450

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3451

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3452

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3453

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3454

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3455

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3456

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3458

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3459

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3460

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3461

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3462

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3495

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3526

\[ {}y^{\prime } = 2 y x \]

[_separable]

3527

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3528

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3529

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3530

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3531

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3532

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3533

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3534

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3535

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3536

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3537

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3538

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3539

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3540

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3575

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3602

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3616

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

3909

\[ {}x^{2}+x -1+\left (2 y x +y\right ) y^{\prime } = 0 \]

[_separable]

3910

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

3911

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

3917

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

3920

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3925

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

3926

\[ {}x y y^{\prime } = \left (x +1\right ) \left (1+y\right ) \]
i.c.

[_separable]

3933

\[ {}y y^{\prime } = x \]

[_separable]

3956

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

3957

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

3958

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

3959

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

3960

\[ {}y^{\prime } = x \sec \left (y\right ) \]

[_separable]

3962

\[ {}y^{\prime } x = y \]

[_separable]

3963

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

3964

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

3965

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

3966

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

3967

\[ {}y^{\prime }+2 y x = 0 \]
i.c.

[_separable]

3968

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

3969

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

3970

\[ {}y^{\prime }-2 y x = 2 x \]
i.c.

[_separable]

3971

\[ {}y^{\prime } x = y x +y \]
i.c.

[_separable]

3973

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

3974

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

3975

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

3976

\[ {}\left (1-x \right ) y^{\prime } = y x \]

[_separable]

3977

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

3978

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

3979

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

[_separable]

3980

\[ {}{\mathrm e}^{2 x} y y^{\prime }+2 x = 0 \]
i.c.

[_separable]

3981

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

3997

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

3998

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

4000

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4001

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4008

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4038

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

4044

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

4045

\[ {}x \left (x -1\right ) y^{\prime } = \cot \left (y\right ) \]

[_separable]

4046

\[ {}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \]

[_separable]

4047

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

[_separable]

4048

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4050

\[ {}\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

4052

\[ {}x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4053

\[ {}x \left (1+y^{2}\right )+\left (1+2 y\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4054

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4055

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4056

\[ {}x y^{3}+\left (1+y\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4104

\[ {}1-\left (y-2 y x \right ) y^{\prime } = 0 \]

[_separable]

4141

\[ {}y^{\prime } = \frac {2+y}{x +1} \]

[_separable]

4178

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4181

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4184

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4192

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4194

\[ {}y^{\prime } = y \tan \left (x \right ) \]

[_separable]

4203

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4231

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4235

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4236

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4242

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4244

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4250

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4255

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4269

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

4270

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

4275

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4276

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

4277

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4278

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

4279

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4280

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4281

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

[_separable]

4283

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

4284

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

4287

\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \]

[_separable]

4291

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4292

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

4293

\[ {}y^{\prime }+y \ln \left (x \right ) \ln \left (y\right ) = 0 \]

[_separable]

4297

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

4312

\[ {}y^{\prime } x = a y \]

[_separable]

4319

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4326

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4347

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4352

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4353

\[ {}y^{\prime } x +2 y = \sqrt {1+y^{2}} \]

[_separable]

4362

\[ {}y^{\prime } x = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \]

[_separable]

4363

\[ {}y^{\prime } x = y-\cot \left (y\right )^{2} \]

[_separable]

4369

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

4375

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

4392

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4394

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4398

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4399

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4401

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4403

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4409

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4414

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4419

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4443

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +y x = 0 \]

[_separable]

4448

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 y x = 0 \]

[_separable]

4454

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4455

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4456

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4459

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4460

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4466

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4469

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2} = 0 \]

[_separable]

4473

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

4479

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4480

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4482

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4484

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4485

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

4487

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4499

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4500

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

4501

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4508

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4517

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4518

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4532

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4536

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4548

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

4549

\[ {}\left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}} \]

[_separable]

4551

\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

[_separable]

4552

\[ {}y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}} \]

[_separable]

4553

\[ {}x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}} \]

[_separable]

4554

\[ {}x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}} \]

[_separable]

4558

\[ {}y^{\prime } \sqrt {x^{3}+1} = \sqrt {1+y^{3}} \]

[_separable]

4559

\[ {}y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )} \]

[_separable]

4560

\[ {}y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}} \]

[_separable]

4561

\[ {}y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}} \]

[_separable]

4565

\[ {}y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (1+y^{3}\right )^{{2}/{3}} = 0 \]

[_separable]

4566

\[ {}y^{\prime } \left (4 x^{3}+\operatorname {a1} x +\operatorname {a0} \right )^{{2}/{3}}+\left (\operatorname {a0} +\operatorname {a1} y+4 y^{3}\right )^{{2}/{3}} = 0 \]

[_separable]

4569

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

4570

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

4571

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

4575

\[ {}y y^{\prime }+x = 0 \]

[_separable]

4576

\[ {}y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

4579

\[ {}y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0 \]

[_separable]

4585

\[ {}y y^{\prime } = a x +b x y^{2} \]

[_separable]

4591

\[ {}\left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

[_separable]

4634

\[ {}3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4635

\[ {}3 \left (2-y\right ) y^{\prime }+y x = 0 \]

[_separable]

4661

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

4668

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

4670

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

4674

\[ {}x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[_separable]

4675

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

4676

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

4681

\[ {}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

[_separable]

4693

\[ {}y \left (1-x \right ) y^{\prime }+x \left (1-y\right ) = 0 \]

[_separable]

4694

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = y x \]

[_separable]

4696

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

4716

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

4725

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

4726

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

4727

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

4734

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

4742

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4745

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

[_separable]

4746

\[ {}\left (1+y\right ) y^{\prime } \sqrt {x^{2}+1} = y^{3} \]

[_separable]

4748

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

4749

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

4763

\[ {}y \left (1+y\right ) y^{\prime } = x \left (x +1\right ) \]

[_separable]

4789

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4796

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

4813

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

4818

\[ {}x^{2} \left (a +y\right )^{2} y^{\prime } = \left (x^{2}+1\right ) \left (y^{2}+a^{2}\right ) \]

[_separable]

4819

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

4820

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

4823

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

4835

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

4841

\[ {}x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right ) \]

[_separable]

4871

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

4872

\[ {}y^{\prime } \sqrt {-y^{2}+b^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

4873

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

4877

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

4878

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

4892

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

4905

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

4964

\[ {}{y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+2 y x = 0 \]

[_quadrature]

4966

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

4969

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5011

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5015

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

5016

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5032

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5036

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5045

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5047

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5048

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (2+y\right ) y^{\prime }+4 y \left (2+y\right ) = 0 \]

[_separable]

5049

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5061

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5087

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5090

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5099

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

5100

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5101

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5104

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0 \]

[_separable]

5112

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5129

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5176

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5177

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5184

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

5222

\[ {}2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y = 0 \]

[_separable]

5245

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

5259

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5260

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5261

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5262

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

[_separable]

5263

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

5264

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

5277

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5309

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

[_separable]

5330

\[ {}\frac {y-y^{\prime } x}{y^{2}+y^{\prime }} = \frac {y-y^{\prime } x}{1+x^{2} y^{\prime }} \]

[_separable]

5351

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5419

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

5430

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

5440

\[ {}2 y-x y \ln \left (x \right )-2 x y^{\prime } \ln \left (x \right ) = 0 \]

[_separable]

5446

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5459

\[ {}\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2} = 0 \]

[_separable]

5460

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5474

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

5475

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

5585

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

5591

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5592

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

5593

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5594

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

5595

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

5597

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

5598

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

5599

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

5653

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

5654

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

5655

\[ {}y^{\prime } \sin \left (x \right ) = y \ln \left (y\right ) \]
i.c.

[_separable]

5656

\[ {}x y y^{\prime }+1+y^{2} = 0 \]
i.c.

[_separable]

5658

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

5659

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

5660

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

5662

\[ {}y^{\prime }-y x = x \]
i.c.

[_separable]

5664

\[ {}\left (y x +x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

5681

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

5769

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

5777

\[ {}u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

5788

\[ {}y^{\prime }+y x = \frac {x}{y} \]

[_separable]

5792

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

5797

\[ {}y^{\prime } x = y x +y \]

[_separable]

5799

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

5801

\[ {}y^{\prime } x = y \]

[_separable]

5819

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

5820

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

5822

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

5823

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

5824

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

5825

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

5826

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

5827

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

5828

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

5830

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

5831

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

5832

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

5833

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

5834

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

5835

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

5836

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

5837

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

5838

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

5839

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

5840

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

5841

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5843

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

5844

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

5845

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

5848

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

5849

\[ {}y^{\prime } = x y^{3} \]

[_separable]

5850

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5851

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5852

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5856

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

5868

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x = 0 \]

[_separable]

5884

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

5900

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{-1+y} \]

[_separable]

5904

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

5905

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

5966

\[ {}y^{\prime }+y x = x y^{2} \]

[_separable]

5980

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

5984

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

5986

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x = x \]

[_separable]

5991

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

5992

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

5993

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

5994

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5995

\[ {}x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime } = 0 \]

[_separable]

6017

\[ {}x y y^{\prime }-\left (x +1\right ) \sqrt {-1+y} = 0 \]

[_separable]

6020

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6023

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

6026

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6033

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6036

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6037

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6130

\[ {}y^{\prime } x = 2 y \]

[_separable]

6131

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6140

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6141

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6142

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6143

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6149

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6150

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

6154

\[ {}x y y^{\prime } = \left (1+y\right ) \left (1-x \right ) \]

[_separable]

6157

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6160

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6162

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6193

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

6203

\[ {}y^{\prime }-y = y x \]

[_separable]

6212

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

6227

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6228

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6618

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

6619

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

6620

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

6621

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

6622

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

6623

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

6624

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6626

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

6627

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

6628

\[ {}y^{\prime }-x y^{2} = 2 y x \]

[_separable]

6630

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

6631

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

6632

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

6633

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

[_separable]

6634

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

6635

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

6636

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

6637

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

6638

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

6639

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

6640

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

6641

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

6651

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

6652

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

[_separable]

6654

\[ {}y-2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

6677

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

6712

\[ {}2 x +3+\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

6738

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

6739

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

6740

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

6748

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

6791

\[ {}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_separable]

6819

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

6837

\[ {}y^{\prime }+2 y x = x \]

[_separable]

6839

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

6967

\[ {}y^{\prime } = x^{2} y \]

[_separable]

6968

\[ {}y y^{\prime } = x \]

[_separable]

6969

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

6970

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

6971

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

7010

\[ {}y^{\prime } x = 2 y \]

[_separable]

7011

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7043

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7044

\[ {}y^{\prime } = 4 y x \]

[_separable]

7045

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

7046

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

7047

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

7048

\[ {}y^{\prime } x = \left (-4 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

7049

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

7050

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

7051

\[ {}x y y^{\prime } = -1+y \]

[_separable]

7052

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7053

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7054

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7055

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7056

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7057

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7058

\[ {}\left (1+y\right ) y^{\prime } = -x^{2}+1 \]
i.c.

[_separable]

7080

\[ {}y^{\prime }+y x = x y^{4} \]

[_separable]

7084

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7090

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

7091

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7094

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7100

\[ {}x \ln \left (y\right )+y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime } = 0 \]

[_separable]

7155

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7156

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

[_separable]

7159

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

7160

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7163

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7164

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]
i.c.

[_separable]

7167

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7168

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

7309

\[ {}y^{\prime } = 2 y x \]

[_separable]

7321

\[ {}y^{\prime } x = y \]

[_separable]

7323

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7671

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

7672

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

7673

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

7674

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

7675

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7676

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

7678

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

7680

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7681

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

7684

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

7688

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

7770

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

7775

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

7789

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

7933

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

7934

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

7949

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

7950

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

7951

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

7952

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

7960

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

7961

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

7962

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

7971

\[ {}y = y^{\prime } x +x^{2} {y^{\prime }}^{2} \]

[_separable]

8028

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8218

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8226

\[ {}y^{\prime } = a x y \]

[_separable]

8286

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9245

\[ {}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0 \]

[_separable]

9265

\[ {}y^{\prime }-x y^{2}-3 y x = 0 \]

[_separable]

9267

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9271

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9296

\[ {}y^{\prime }-\frac {\sqrt {-1+y^{2}}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

9297

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {-1+y^{2}}} = 0 \]

[_separable]

9299

\[ {}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {1+y}|} \left (x +1\right )^{{3}/{2}}} = 0 \]

[_separable]

9302

\[ {}y^{\prime }-\frac {\sqrt {{| y \left (-1+y\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}} = 0 \]

[_separable]

9303

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

9308

\[ {}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0 \]

[_separable]

9311

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

9332

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

9353

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

9366

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

9370

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

9393

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x = 0 \]

[_separable]

9394

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

9409

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

9418

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

9425

\[ {}\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {-1+y^{2}} = 0 \]

[_separable]

9426

\[ {}y^{\prime } \sqrt {-x^{2}+1}-y \sqrt {-1+y^{2}} = 0 \]

[_separable]

9434

\[ {}\sin \left (2 x \right ) y^{\prime }+\sin \left (2 y\right ) = 0 \]

[_separable]

9445

\[ {}y y^{\prime }+x y^{2}-4 x = 0 \]

[_separable]

9477

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9491

\[ {}x^{2} \left (-1+y\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[_separable]

9543

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9544

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

9566

\[ {}\frac {y^{\prime } f_{\nu }\left (x \right ) \left (-y+y^{p +1}\right )}{-1+y}-\frac {g_{\nu }\left (x \right ) \left (-y+y^{q +1}\right )}{-1+y} = 0 \]

[_separable]

9570

\[ {}\sqrt {-1+y^{2}}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

9582

\[ {}y^{\prime } \left (1+\sin \left (x \right )\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

9588

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

9593

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

9594

\[ {}3 y^{\prime } \sin \left (x \right ) \sin \left (y\right )+5 \cos \left (x \right )^{4} y = 0 \]

[_separable]

9630

\[ {}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

9672

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

9674

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

9675

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (2+y\right ) y^{\prime }+4 y \left (2+y\right ) = 0 \]

[_separable]

9676

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

9682

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

9704

\[ {}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0 \]

[_quadrature]

9714

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

9738

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

9759

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

9798

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

11225

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

12025

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

12026

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12027

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

12028

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

12033

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12047

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

12048

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

12052

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12063

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12069

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

12070

\[ {}\sqrt {1-y^{2}}+y^{\prime } \sqrt {-x^{2}+1} = 0 \]

[_separable]

12074

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

12081

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x = a x y^{2} \]

[_separable]

12087

\[ {}\left (1-x \right ) y-x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

12088

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12131

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12247

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12248

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12253

\[ {}2 t x^{\prime } = x \]

[_separable]

12274

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

12275

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

12276

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

12277

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

12279

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12282

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12283

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12285

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12286

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12287

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]
i.c.

[_separable]

12288

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

12289

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12290

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

12291

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

12296

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12298

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

[_separable]

12308

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

12310

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

12313

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

12316

\[ {}x^{\prime } = 2 x t \]

[_separable]

12321

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

12324

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12328

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12331

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12332

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12333

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

12475

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12491

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

12492

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

12501

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

12512

\[ {}4 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

12513

\[ {}y x +2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

12514

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

12515

\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

[_separable]

12516

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

12517

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

12518

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

12526

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12527

\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]
i.c.

[_separable]

12528

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12539

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12540

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

12541

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

12550

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

12552

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

12553

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{x t} \]

[_separable]

12555

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

12557

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12569

\[ {}\left (1+y\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

12573

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

12575

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

12578

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

12579

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

12584

\[ {}x^{2} y^{\prime }+y x = x y^{3} \]

[_separable]

12585

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

12588

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

12591

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

12593

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

12881

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

12882

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

12883

\[ {}x^{\prime } = x t^{2} \]

[_separable]

12885

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

12887

\[ {}y^{\prime } x = k y \]

[_separable]

12888

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

12894

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

12907

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

12908

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

13010

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

13017

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

13024

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13110

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

13111

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13113

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

[_separable]

13117

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

13119

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

13130

\[ {}5 y^{\prime }-y x = 0 \]

[_separable]

13324

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13325

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

13326

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

13327

\[ {}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

13328

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

13329

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

13330

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13331

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

13332

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

13333

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

13334

\[ {}y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}} = 0 \]

[_separable]

13335

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13336

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

13363

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2} = 0 \]

[_separable]

13375

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13383

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

13438

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13446

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13473

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

13480

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

13488

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

13495

\[ {}y^{\prime }-2 y x = 0 \]

[_separable]

13498

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

13501

\[ {}x y^{\prime } \ln \left (x \right )-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

13519

\[ {}y^{\prime } = y x \]

[_separable]

13520

\[ {}y^{\prime } = -y x \]

[_separable]

13524

\[ {}y^{\prime } = y x \]

[_separable]

13525

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

13526

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13537

\[ {}y^{\prime } = \frac {1}{y x} \]

[_separable]

13541

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

13542

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

13543

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

13557

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13572

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

13573

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13574

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

13576

\[ {}y^{\prime } = y x +x \]
i.c.

[_separable]

13577

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

13578

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

13580

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

13586

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13591

\[ {}x -y y^{\prime } = 0 \]

[_separable]

13592

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13594

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

13595

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

13596

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13599

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13600

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13610

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13611

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13612

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13613

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13614

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13615

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13616

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13617

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13618

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13619

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13620

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13621

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13622

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13633

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13634

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13635

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13636

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13763

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

13764

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

13765

\[ {}y^{\prime } = t^{4} y \]

[_separable]

13770

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

13771

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

13772

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

13773

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

13775

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

13777

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

13778

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

13779

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

13780

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

13782

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

13784

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13785

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

13787

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

13789

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

13791

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

13792

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

13794

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

13796

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13807

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

13817

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

13818

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

13819

\[ {}y^{\prime } = t +t y \]

[_separable]

13846

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

13848

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

13930

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

13935

\[ {}y^{\prime } = t y \]

[_separable]

13937

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

13943

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13946

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

13949

\[ {}y^{\prime } = \frac {\left (1+t \right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

13950

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13952

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

13956

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

13957

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14145

\[ {}y y^{\prime } = 2 x \]

[_separable]

14186

\[ {}y^{\prime }+3 y x = 6 x \]

[_separable]

14189

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14192

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

14193

\[ {}\left (-2+y\right ) y^{\prime } = x -3 \]

[_separable]

14197

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14202

\[ {}y^{\prime }+y x = 4 x \]

[_separable]

14204

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14206

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

14207

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14209

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14210

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14211

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

14212

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14213

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14214

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14215

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

14217

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14219

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

14221

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

14223

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14224

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14225

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14227

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14228

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

14229

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

14230

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

14233

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14234

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

14235

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

14236

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

14239

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

14240

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14241

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14242

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14243

\[ {}y^{\prime } = \frac {-1+y^{2}}{y x} \]
i.c.

[_separable]

14244

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 y x \]
i.c.

[_separable]

14252

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

14258

\[ {}y^{\prime }-2 y x = x \]

[_separable]

14306

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14310

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

14312

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14316

\[ {}3 y+3 y^{2}+\left (2 x +4 y x \right ) y^{\prime } = 0 \]

[_separable]

14317

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

14322

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

14323

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14337

\[ {}y^{\prime } = \frac {1}{y x -3 x} \]

[_separable]

14340

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

14346

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

14360

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14363

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

14365

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14367

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14953

\[ {}y^{\prime }+y x = 0 \]

[_separable]

14964

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

14994

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (-2+y\right )} \]

[_separable]

15004

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15027

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15029

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15031

\[ {}t y^{\prime } = y \]

[_separable]

15032

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15053

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15054

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15056

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15057

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15058

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15060

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

15061

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

15062

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

15063

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

15064

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

15065

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15066

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15067

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

15069

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

15070

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

15071

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15072

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15073

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

15074

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

15075

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

15076

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

15078

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

15079

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

15080

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

15081

\[ {}\frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

15082

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

15083

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

15084

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

15085

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15086

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15088

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

[_separable]

15089

\[ {}y^{\prime } = \sin \left (t -y\right )+\sin \left (y+t \right ) \]

[_separable]

15100

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15102

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15103

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15107

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

15108

\[ {}y^{\prime } = \frac {3+y}{1+3 x} \]
i.c.

[_separable]

15109

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15110

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15111

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15112

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15113

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15114

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15115

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15116

\[ {}y^{\prime } = -\frac {-2+y}{x -2} \]
i.c.

[_separable]

15126

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15145

\[ {}y^{\prime }-y x = x \]

[_separable]

15149

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15155

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15159

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15187

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15188

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15190

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15194

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15197

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15198

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15203

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

15207

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15215

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15227

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15228

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15248

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15252

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

15254

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

15255

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

15285

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

15299

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15300

\[ {}\cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right ) = 0 \]

[_separable]

15301

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15302

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

15303

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15304

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

15305

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

15306

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

15319

\[ {}y^{\prime }+t y = t \]

[_separable]

15336

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

15337

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

15338

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

15827

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15839

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = 2 x \]

[_separable]

15845

\[ {}y^{\prime } = x \left (-1+y\right ) \]

[_separable]

15850

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

15855

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

15865

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

15866

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

15867

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

15868

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

15869

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

[_separable]

15870

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

15872

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

15873

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

15874

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

15875

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

15876

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15877

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

15882

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

15883

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

15894

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

15896

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

15897

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

15928

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

15942

\[ {}y^{\prime }+2 y x = 2 x y^{2} \]

[_separable]

15945

\[ {}y^{\prime }+3 y x = y \,{\mathrm e}^{x^{2}} \]

[_separable]

15950

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

15963

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

15982

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16043

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

[_separable]

16044

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16051

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (-1+y\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

[_separable]

16060

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

16087

\[ {}y x = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[_separable]