| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=-3 y+4 \cos \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.789 |
|
| \begin{align*}
y^{\prime }&=2 y+\sin \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.678 |
|
| \begin{align*}
y^{\prime }&=3 y-4 \,{\mathrm e}^{3 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.027 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| \begin{align*}
y^{\prime }+2 y&={\mathrm e}^{\frac {t}{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.329 |
|
| \begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 10 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.340 |
|
| \begin{align*}
y+y^{\prime }&=\cos \left (2 t \right ) \\
y \left (0\right ) &= 5 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| \begin{align*}
3 y+y^{\prime }&=\cos \left (2 t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.763 |
|
| \begin{align*}
-2 y+y^{\prime }&=7 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 3 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.217 |
|
| \begin{align*}
y^{\prime }+2 y&=3 t^{2}+2 t -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.759 |
|
| \begin{align*}
y^{\prime }+2 y&=t^{2}+2 t +1+{\mathrm e}^{4 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.510 |
|
| \begin{align*}
y+y^{\prime }&=t^{3}+\sin \left (3 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.792 |
|
| \begin{align*}
y^{\prime }-3 y&=2 t -{\mathrm e}^{4 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.009 |
|
| \begin{align*}
y+y^{\prime }&=\cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.278 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{t}+2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.841 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y}{t}+t^{5} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.235 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{1+t}+t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.248 |
|
| \begin{align*}
y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.199 |
|
| \begin{align*}
y^{\prime }-\frac {2 t y}{t^{2}+1}&=3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.021 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{t}&=t^{3} {\mathrm e}^{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.328 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{1+t}+2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.508 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{1+t}+4 t^{2}+4 t \\
y \left (1\right ) &= 10 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.985 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{t}+2 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.244 |
|
| \begin{align*}
y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.283 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{t}&=2 t^{2} \\
y \left (-2\right ) &= 4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.451 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{t}&=2 t^{3} {\mathrm e}^{2 t} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.046 |
|
| \begin{align*}
y^{\prime }&=\sin \left (t \right ) y+4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.676 |
|
| \begin{align*}
y^{\prime }&=t^{2} y+4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.408 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{t^{2}}+4 \cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| \begin{align*}
y^{\prime }&=y+4 \cos \left (t^{2}\right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.873 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{-t^{2}} y+\cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
2.577 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{\sqrt {t^{3}-3}}+t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
42.987 |
|
| \begin{align*}
y^{\prime }&=a t y+4 \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.747 |
|
| \begin{align*}
y^{\prime }&=t^{r} y+4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
1.725 |
|
| \begin{align*}
v^{\prime }+\frac {2 v}{5}&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.765 |
|
| \begin{align*}
y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.097 |
|
| \begin{align*}
y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.020 |
|
| \begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime }&=t^{2} \left (t^{2}+1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
y^{\prime }&=-\sin \left (y\right )^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
21.019 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.385 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.575 |
|
| \begin{align*}
y^{\prime }&=\left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✗ |
✗ |
✗ |
✗ |
11.931 |
|
| \begin{align*}
y^{\prime }&=y+{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| \begin{align*}
y^{\prime }&=3-2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
y^{\prime }&=t y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.706 |
|
| \begin{align*}
y^{\prime }&=3 y+{\mathrm e}^{7 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| \begin{align*}
y^{\prime }&=\frac {t y}{t^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.731 |
|
| \begin{align*}
y^{\prime }&=-5 y+\sin \left (3 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.638 |
|
| \begin{align*}
y^{\prime }&=t +\frac {2 y}{1+t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.651 |
|
| \begin{align*}
y^{\prime }&=3+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.552 |
|
| \begin{align*}
y^{\prime }&=2 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.900 |
|
| \begin{align*}
y^{\prime }&=-3 y+{\mathrm e}^{-2 t}+t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.635 |
|
| \begin{align*}
x^{\prime }&=-t x \\
x \left (0\right ) &= {\mathrm e} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.045 |
|
| \begin{align*}
y^{\prime }&=2 y+\cos \left (4 t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.900 |
|
| \begin{align*}
y^{\prime }&=3 y+2 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.261 |
|
| \begin{align*}
y^{\prime }&=t^{2} y^{3}+y^{3} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.077 |
|
| \begin{align*}
y^{\prime }+5 y&=3 \,{\mathrm e}^{-5 t} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.301 |
|
| \begin{align*}
y^{\prime }&=2 t y+3 t \,{\mathrm e}^{t^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.516 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (1+t \right )^{2}}{\left (1+y\right )^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.730 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2}+3 t^{2} y^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.633 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.428 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}}{y+t^{3} y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.193 |
|
| \begin{align*}
y^{\prime }&=y^{2}-2 y+1 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
y^{\prime }&=\left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✓ |
4.827 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\
\end{align*} |
[_Abel] |
✗ |
✗ |
✗ |
✗ |
7.580 |
|
| \begin{align*}
y^{\prime }&=t^{2} y+1+y+t^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.270 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y+1}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.607 |
|
| \begin{align*}
y^{\prime }&=3-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
1.778 |
|
| \begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=2 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
x^{\prime }&=-x+2 y \\
y^{\prime }&=2 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| \begin{align*}
x^{\prime }&=3 y \\
y^{\prime }&=3 \pi y-\frac {x}{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| \begin{align*}
p^{\prime }&=3 p-2 q-7 r \\
q^{\prime }&=-2 p+6 r \\
r^{\prime }&=\frac {73 q}{100}+2 r \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
64.126 |
|
| \begin{align*}
x^{\prime }&=-3 x+2 \pi y \\
y^{\prime }&=4 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.641 |
|
| \begin{align*}
x^{\prime }&=\beta y \\
y^{\prime }&=\gamma x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=x+3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
x^{\prime }&=-2 x-y \\
y^{\prime }&=2 x-5 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
x^{\prime }&=-2 x-3 y \\
y^{\prime }&=3 x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
x^{\prime }&=2 x+3 y \\
y^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
x^{\prime }&=1 \\
y^{\prime }&=x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=-2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
x^{\prime }&=-4 x-2 y \\
y^{\prime }&=-x-3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
x^{\prime }&=-5 x-2 y \\
y^{\prime }&=-x-4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=-x+4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
x^{\prime }&=-\frac {x}{2} \\
y^{\prime }&=x-\frac {y}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
x^{\prime }&=5 x+4 y \\
y^{\prime }&=9 x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
x^{\prime }&=3 x+4 y \\
y^{\prime }&=x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=x-4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
x^{\prime }&=-2 x-2 y \\
y^{\prime }&=-2 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
x^{\prime }&=-2 x-2 y \\
y^{\prime }&=-2 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
x^{\prime }&=-2 x-2 y \\
y^{\prime }&=-2 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.352 |
|