2.16.122 Problems 12101 to 12200

Table 2.260: Main lookup table. Sorted sequentially by problem number.

#

ODE

Program classification

CAS classification

Solved?

Verified?

time (sec)

12101

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x-y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

1.425

12102

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-6 x+4 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.66

12103

\[ {}\left [\begin {array}{c} x^{\prime }=-11 x-2 y \\ y^{\prime }=13 x-9 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.72

12104

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-5 y \\ y^{\prime }=10 x-3 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.666

12105

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.413

12106

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+2 y \\ y^{\prime }=-2 x-2 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.428

12107

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-y \\ y^{\prime }=x-5 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.427

12108

\[ {}\left [\begin {array}{c} x^{\prime }=13 x \\ y^{\prime }=13 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.308

12109

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.435

12110

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=-x+y \end {array}\right ] \]

system of linear ODEs

system of linear ODEs

0.297

12111

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

3.395

12112

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.199

12113

\[ {}x y^{\prime } = y+\sqrt {x^{2}+y^{2}} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.964

12114

\[ {}x y^{\prime }+y = x^{3} \]

exact, linear, differentialType, first_order_ode_lie_symmetry_lookup

[_linear]

1.125

12115

\[ {}y-x y^{\prime } = x^{2} y y^{\prime } \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.868

12116

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_linear, ‘class A‘]]

0.984

12117

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.909

12118

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

exact, separable, first order special form ID 1, first_order_ode_lie_symmetry_lookup

[_separable]

0.956

12119

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_linear, ‘class A‘]]

1.2

12120

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

exactByInspection, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _dAlembert]

5.086

12121

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

separable

[_separable]

1.464

12122

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

quadrature

[_quadrature]

0.51

12123

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

homogeneousTypeD, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _dAlembert]

1.42

12124

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

quadrature

[_quadrature]

1.323

12125

\[ {}y = x y^{\prime }+\frac {1}{y} \]

exact, bernoulli, separable, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_separable]

6.814

12126

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

quadrature

[_quadrature]

0.693

12127

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

1.094

12128

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

quadrature

[_quadrature]

1.596

12129

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

quadrature

[_quadrature]

1.616

12130

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.189

12131

\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]

riccati, bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

1.172

12132

\[ {}y^{\prime } = x +y^{2} \]

i.c.

riccati

[[_Riccati, _special]]

3.212

12133

\[ {}y^{\prime } = x y^{3}+x^{2} \]

i.c.

abelFirstKind

[_Abel]

N/A

0.744

12134

\[ {}y^{\prime } = x^{2}-y^{2} \]

riccati

[_Riccati]

1.406

12135

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.65

12136

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

quadrature

[_quadrature]

0.772

12137

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.71

12138

\[ {}y^{\prime } = x -y^{2} \]

i.c.

riccati

[[_Riccati, _special]]

1.542

12139

\[ {}y^{\prime } = \left (x -5 y\right )^{\frac {1}{3}}+2 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _dAlembert]

4.777

12140

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

riccati, bernoulli, exactByInspection, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.256

12141

\[ {}x^{\prime }+5 x = 10 t +2 \]

i.c.

linear, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_linear, ‘class A‘]]

2.14

12142

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]

i.c.

riccati, bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.663

12143

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

i.c.

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.594

12144

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

i.c.

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.797

12145

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.773

12146

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.496

12147

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

3.135

12148

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

riccati, bernoulli, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.12

12149

\[ {}y \left ({y^{\prime }}^{2}+1\right ) = a \]

quadrature

[_quadrature]

2.602

12150

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

exactWithIntegrationFactor

[_rational]

1.532

12151

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

7.424

12152

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

riccati, bernoulli, exactByInspection, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.2

12153

\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \]

exact, differentialType, homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.433

12154

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

riccati, bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

1.475

12155

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

exact, linear, first_order_ode_lie_symmetry_lookup

[_linear]

2.432

12156

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.665

12157

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

exact, differentialType

[_exact, _rational]

13.914

12158

\[ {}\left (-x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \]

homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.112

12159

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.188

12160

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.456

12161

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.609

12162

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

separable

[_separable]

7.544

12163

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

i.c.

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _missing_x]]

1.149

12164

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

1.955

12165

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

higher_order_linear_constant_coefficients_ODE

[[_3rd_order, _missing_x]]

0.354

12166

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

1.08

12167

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

kovacic, second_order_euler_ode, second_order_change_of_variable_on_x_method_1, second_order_change_of_variable_on_x_method_2, second_order_change_of_variable_on_y_method_1, second_order_change_of_variable_on_y_method_2, linear_second_order_ode_solved_by_an_integrating_factor

[[_2nd_order, _with_linear_symmetries]]

3.027

12168

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

1.199

12169

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.143

12170

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

kovacic, second_order_linear_constant_coeff, linear_second_order_ode_solved_by_an_integrating_factor

[[_2nd_order, _linear, _nonhomogeneous]]

0.817

12171

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.81

12172

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.418

12173

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _linear, _nonhomogeneous]]

3.098

12174

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

unknown

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

N/A

0.0

12175

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _missing_x]]

0.289

12176

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _with_linear_symmetries]]

0.293

12177

\[ {}y^{\prime \prime }+4 x y = 0 \]

second order series method. Ordinary point, second order series method. Taylor series method

[[_Emden, _Fowler]]

0.817

12178

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

second_order_bessel_ode

[[_2nd_order, _with_linear_symmetries]]

1.268

12179

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

i.c.

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.799

12180

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

i.c.

second_order_ode_missing_x, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

38.673

12181

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

0.99

12182

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

3.149

12183

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

second_order_nonlinear_solved_by_mainardi_lioville_method

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.667

12184

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

second_order_ode_missing_x

[[_2nd_order, _missing_x]]

1.189

12185

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

1.362

12186

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

kovacic, second_order_linear_constant_coeff, linear_second_order_ode_solved_by_an_integrating_factor

[[_2nd_order, _linear, _nonhomogeneous]]

1.047

12187

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

higher_order_linear_constant_coefficients_ODE

[[_3rd_order, _with_linear_symmetries]]

2.431

12188

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

1.105

12189

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

kovacic

[[_2nd_order, _with_linear_symmetries]]

0.853

12190

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

unknown

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

N/A

0.407

12191

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x]]

0.896

12192

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _missing_y]]

0.307

12193

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _linear, _nonhomogeneous]]

1.273

12194

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

kovacic, second_order_change_of_variable_on_x_method_1, second_order_change_of_variable_on_x_method_2

[[_2nd_order, _linear, _nonhomogeneous]]

83.548

12195

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

reduction_of_order

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.25

12196

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _linear, _nonhomogeneous]]

2.079

12197

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

second_order_ode_high_degree, second_order_ode_missing_y

[[_2nd_order, _quadrature]]

3.099

12198

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

kovacic, second_order_linear_constant_coeff, linear_second_order_ode_solved_by_an_integrating_factor

[[_2nd_order, _linear, _nonhomogeneous]]

1.064

12199

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

second_order_nonlinear_solved_by_mainardi_lioville_method

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.255

12200

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _with_linear_symmetries]]

68.467