2.2.168 Problems 16701 to 16800

Table 2.349: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16701

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=12 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.602

16702

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=30 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.169

16703

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.367

16704

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&={\mathrm e}^{-x^{2}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.542

16705

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\tan \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

1.069

16706

\begin{align*} y^{\prime \prime \prime \prime }-81 y&=\sinh \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.602

16707

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y&=12 x \sin \left (x^{2}\right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.588

16708

\begin{align*} y^{\prime \prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.611

16709

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.264

16710

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.702

16711

\begin{align*} y^{\prime \prime }-36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.824

16712

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.110

16713

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.301

16714

\begin{align*} y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _missing_y]]

9.164

16715

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.079

16716

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.974

16717

\begin{align*} y^{\prime \prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.418

16718

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

7.830

16719

\begin{align*} x^{2} y^{\prime \prime }+\frac {5 y}{2}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.944

16720

\begin{align*} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.083

16721

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.720

16722

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.253

16723

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.871

16724

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.288

16725

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.359

16726

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.398

16727

\begin{align*} y^{\prime \prime }+y^{\prime }-30 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.515

16728

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.784

16729

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

30.879

16730

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }&=8 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.153

16731

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15.986

16732

\begin{align*} 9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.776

16733

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.059

16734

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.661

16735

\begin{align*} y^{\prime \prime }+20 y^{\prime }+100 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.399

16736

\begin{align*} y^{\prime \prime } x&=3 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

32.752

16737

\begin{align*} y^{\prime \prime }-5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.019

16738

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=98 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.351

16739

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

34.773

16740

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

40.420

16741

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.149

16742

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.498

16743

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

36.247

16744

\begin{align*} y^{\prime \prime }+36 y&=6 \sec \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.293

16745

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=18 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.334

16746

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=10 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.771

16747

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y&=10 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.916

16748

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=2 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.703

16749

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=-3 x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

15.687

16750

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.003

16751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

21.435

16752

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.893

16753

\begin{align*} 3 y^{\prime \prime }+8 y^{\prime }-3 y&=123 x \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

42.509

16754

\begin{align*} y^{\prime \prime \prime }+8 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.156

16755

\begin{align*} y^{\left (6\right )}-64 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.207

16756

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (x +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

9.035

16757

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17.729

16758

\begin{align*} y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.285

16759

\begin{align*} -2 y+y^{\prime }&=t^{3} \\ y \left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.454

16760

\begin{align*} 3 y+y^{\prime }&=\operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.153

16761

\begin{align*} y^{\prime \prime }-4 y&=t^{3} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

16762

\begin{align*} y^{\prime \prime }+4 y&=20 \,{\mathrm e}^{4 t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.416

16763

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

16764

\begin{align*} y^{\prime \prime }+4 y&=3 \operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.636

16765

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{4 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.379

16766

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=t^{2} {\mathrm e}^{4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

16767

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=7 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.326

16768

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

16769

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

16770

\begin{align*} y^{\prime \prime \prime }-27 y&={\mathrm e}^{-3 t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ y^{\prime \prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _with_linear_symmetries]]

0.540

16771

\begin{align*} t y^{\prime \prime }+y^{\prime }+t y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.396

16772

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.267

16773

\begin{align*} y^{\prime \prime }+9 y&=27 t^{3} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

16774

\begin{align*} y^{\prime \prime }+8 y^{\prime }+7 y&=165 \,{\mathrm e}^{4 t} \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.344

16775

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.282

16776

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t^{2} {\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.233

16777

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.292

16778

\begin{align*} y^{\prime \prime }+8 y^{\prime }+17 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.277

16779

\begin{align*} y^{\prime \prime }&={\mathrm e}^{t} \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.375

16780

\begin{align*} y^{\prime \prime }-4 y^{\prime }+40 y&=122 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.389

16781

\begin{align*} y^{\prime \prime }-9 y&=24 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.343

16782

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

16783

\begin{align*} y^{\prime \prime }+4 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.338

16784

\begin{align*} y^{\prime \prime }+4 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.335

16785

\begin{align*} y^{\prime \prime }+4 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.357

16786

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

16787

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

16788

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.325

16789

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.379

16790

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.229

16791

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.333

16792

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.382

16793

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.370

16794

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.308

16795

\begin{align*} y^{\prime \prime }&=\operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.285

16796

\begin{align*} y^{\prime \prime }&=\operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.292

16797

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.557

16798

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.875

16799

\begin{align*} y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.272

16800

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

4.087