2.3.10 first order ode exact

Table 2.351: first order ode exact

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

19

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

20

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

21

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

22

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

23

\[ {}y^{\prime } = 1-x +y \]

[[_linear, ‘class A‘]]

24

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

25

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

26

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

37

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

38

\[ {}y^{\prime } = -x +y \]
i.c.

[[_linear, ‘class A‘]]

41

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

46

\[ {}y^{\prime } = 3 \sqrt {y x} \]

[[_homogeneous, ‘class G‘]]

47

\[ {}y^{\prime } = 64^{{1}/{3}} \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

48

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

54

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

55

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

56

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

61

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

63

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

74

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

75

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

76

\[ {}y^{\prime }-2 y x = {\mathrm e}^{x^{2}} \]

[_linear]

77

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

78

\[ {}y^{\prime } x +5 y = 7 x^{2} \]
i.c.

[_linear]

79

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

80

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

81

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

82

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

83

\[ {}y+y^{\prime } x = 3 y x \]
i.c.

[_separable]

84

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

85

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

86

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

87

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

89

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

90

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

91

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

92

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

93

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

94

\[ {}y^{\prime } = 2 y x +3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

95

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

97

\[ {}y^{\prime } \left (x^{2}+1\right )+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

101

\[ {}y^{\prime } = 1+2 y x \]

[_linear]

102

\[ {}2 y^{\prime } x = y+2 x \cos \left (x \right ) \]
i.c.

[_linear]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

104

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) \]

[_linear]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

108

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

113

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

129

\[ {}y^{2} \left (y+y^{\prime } x \right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

132

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

133

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

134

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

138

\[ {}2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

139

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

140

\[ {}1+y \,{\mathrm e}^{y x}+\left (2 y+x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

141

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

142

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

143

\[ {}3 y^{3} x^{2}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

144

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

145

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

179

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

182

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

183

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

185

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

189

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

193

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

195

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

198

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

199

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

201

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

203

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

205

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

206

\[ {}y+y^{\prime } x = 2 \,{\mathrm e}^{2 x} \]

[_linear]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

213

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

661

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

663

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

665

\[ {}y^{\prime } = 1-x +y \]

[[_linear, ‘class A‘]]

666

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

668

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

677

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

682

\[ {}y^{\prime } = 3 \sqrt {y x} \]

[[_homogeneous, ‘class G‘]]

683

\[ {}y^{\prime } = 4 \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

698

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

705

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

706

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

707

\[ {}y^{\prime }-2 y x = {\mathrm e}^{x^{2}} \]

[_linear]

708

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

709

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]
i.c.

[_linear]

710

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

711

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

712

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

713

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

714

\[ {}y+y^{\prime } x = 3 y x \]
i.c.

[_separable]

715

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

717

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

718

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

720

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

721

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

722

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

723

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

724

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

725

\[ {}y^{\prime } = 2 y x +3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

726

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

728

\[ {}y^{\prime } \left (x^{2}+1\right )+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

737

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

753

\[ {}y^{2} \left (y+y^{\prime } x \right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

756

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

757

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

762

\[ {}2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

763

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

764

\[ {}1+y \,{\mathrm e}^{y x}+\left (2 y+x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

765

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

766

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

767

\[ {}3 y^{3} x^{2}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

768

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

769

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

771

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

774

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

775

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

781

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

785

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

787

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

790

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

791

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

793

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

796

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

797

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

798

\[ {}y+y^{\prime } x = 2 \,{\mathrm e}^{2 x} \]

[_linear]

799

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

805

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1098

\[ {}y^{\prime }+3 y = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1099

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1100

\[ {}y^{\prime }+y = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1101

\[ {}\frac {y}{t}+y^{\prime } = 3 \cos \left (2 t \right ) \]

[_linear]

1102

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1103

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]

[_linear]

1104

\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

1105

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

1106

\[ {}y+2 y^{\prime } = 3 t \]

[[_linear, ‘class A‘]]

1107

\[ {}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t} \]

[_linear]

1108

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1109

\[ {}y+2 y^{\prime } = 3 t^{2} \]

[[_linear, ‘class A‘]]

1110

\[ {}-y+y^{\prime } = 2 \,{\mathrm e}^{2 t} t \]
i.c.

[[_linear, ‘class A‘]]

1111

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1112

\[ {}2 y+t y^{\prime } = t^{2}-t +1 \]
i.c.

[_linear]

1113

\[ {}\frac {2 y}{t}+y^{\prime } = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

1114

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1115

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1116

\[ {}4 t^{2} y+t^{3} y^{\prime } = {\mathrm e}^{-t} \]
i.c.

[_linear]

1117

\[ {}\left (1+t \right ) y+t y^{\prime } = t \]
i.c.

[_linear]

1118

\[ {}-\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1119

\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1120

\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1121

\[ {}\left (1+t \right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1122

\[ {}2 y+t y^{\prime } = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

1123

\[ {}\cos \left (t \right ) y+\sin \left (t \right ) y^{\prime } = {\mathrm e}^{t} \]
i.c.

[_linear]

1124

\[ {}\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1125

\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \]

[[_linear, ‘class A‘]]

1126

\[ {}\frac {y}{4}+y^{\prime } = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1127

\[ {}-y+y^{\prime } = 1+3 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1128

\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \]

[[_linear, ‘class A‘]]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1132

\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \]

[_separable]

1133

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \]

[_separable]

1134

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1136

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1145

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \]
i.c.

[_separable]

1146

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

1147

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1149

\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \]
i.c.

[_separable]

1150

\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1152

\[ {}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

1153

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1157

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1166

\[ {}\ln \left (t \right ) y+\left (t -3\right ) y^{\prime } = 2 t \]

[_linear]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1168

\[ {}\tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1169

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1170

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1171

\[ {}y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right ) \]

[_linear]

1172

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1173

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (y-2\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (-1+y^{2}\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1195

\[ {}2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1199

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

1201

\[ {}2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact]

1202

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1206

\[ {}-1+9 x^{2}+y+\left (x -4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1207

\[ {}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1208

\[ {}y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1210

\[ {}2 y x +3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1212

\[ {}1+\left (-\sin \left (y\right )+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1213

\[ {}y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1214

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1215

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {3}{y}+\left (\frac {3 x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

[_rational]

1216

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1217

\[ {}3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1219

\[ {}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \]

[_separable]

1220

\[ {}y^{\prime } = \frac {2 x +y}{3-x +3 y^{2}} \]
i.c.

[_rational]

1221

\[ {}y^{\prime } = 3-6 x +y-2 y x \]

[_separable]

1222

\[ {}y^{\prime } = \frac {-1-2 y x -y^{2}}{x^{2}+2 y x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1223

\[ {}y x +y^{\prime } x = 1-y \]
i.c.

[_linear]

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1225

\[ {}y^{\prime } x +2 y = \frac {\sin \left (x \right )}{x} \]
i.c.

[_linear]

1226

\[ {}y^{\prime } = \frac {-1-2 y x}{x^{2}+2 y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{-2+y} = 0 \]

[_separable]

1228

\[ {}x^{2}+y+\left ({\mathrm e}^{y}+x \right ) y^{\prime } = 0 \]

[_exact]

1229

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{x}} \]

[_linear]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1233

\[ {}y^{\prime } = \frac {-{\mathrm e}^{2 y} \cos \left (x \right )+\cos \left (y\right ) {\mathrm e}^{-x}}{2 \,{\mathrm e}^{2 y} \sin \left (x \right )-\sin \left (y\right ) {\mathrm e}^{-x}} \]

[NONE]

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1235

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x^{2}-2 x} \]

[[_linear, ‘class A‘]]

1236

\[ {}y^{\prime } = \frac {3 x^{2}-2 y-y^{3}}{2 x +3 x y^{2}} \]

[_rational]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1238

\[ {}\frac {-4+6 y x +2 y^{2}}{3 x^{2}+4 y x +3 y^{2}}+y^{\prime } = 0 \]

[_rational]

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

1240

\[ {}\left (1+t \right ) y+t y^{\prime } = {\mathrm e}^{2 t} \]

[_linear]

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

1242

\[ {}\frac {2 x}{y}-\frac {y}{x^{2}+y^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1244

\[ {}y^{\prime } = \frac {x}{x^{2}+y+y^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1248

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 y x} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1520

\[ {}y+y^{\prime } x = x^{2} \]

[_linear]

1521

\[ {}y^{\prime }+2 y x = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (-1+y^{2}\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1530

\[ {}y^{\prime } = \cos \left (x \right )-\tan \left (x \right ) y \]
i.c.

[_linear]

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}y^{\prime } x +3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1549

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

[_linear]

1550

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

1551

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \]

[_linear]

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1553

\[ {}y^{\prime }+\frac {4 y}{x -1} = \frac {1}{\left (x -1\right )^{5}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{4}} \]

[_linear]

1554

\[ {}y^{\prime } x +\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

1555

\[ {}y^{\prime } x +2 y = \frac {2}{x^{2}}+1 \]

[_linear]

1556

\[ {}y^{\prime }+\tan \left (x \right ) y = \cos \left (x \right ) \]

[_linear]

1557

\[ {}2 y+\left (x +1\right ) y^{\prime } = \frac {\sin \left (x \right )}{x +1} \]

[_linear]

1558

\[ {}\left (x -2\right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (x -2\right )^{3} \]

[_linear]

1559

\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \]

[_linear]

1560

\[ {}x^{2} y^{\prime }+3 y x = {\mathrm e}^{x} \]

[_linear]

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1562

\[ {}4 y x +y^{\prime } \left (x^{2}+1\right ) = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

1563

\[ {}y^{\prime } x +3 y = \frac {2}{x \left (x^{2}+1\right )} \]
i.c.

[_linear]

1564

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1566

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1}{\left (x -1\right )^{3}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{2}} \]
i.c.

[_linear]

1567

\[ {}y^{\prime } x +2 y = 8 x^{2} \]
i.c.

[_linear]

1568

\[ {}y^{\prime } x -2 y = -x^{2} \]
i.c.

[_linear]

1569

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

1570

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1+\left (x -1\right ) \sec \left (x \right )^{2}}{\left (x -1\right )^{3}} \]
i.c.

[_linear]

1571

\[ {}\left (x +2\right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (x +2\right )^{3}} \]
i.c.

[_linear]

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 y x = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1575

\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1576

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

[_separable]

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}y^{\prime } \left (x^{2}+1\right )+y x = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (-2+y\right ) \]

[_separable]

1586

\[ {}\left (-1+y\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]
i.c.

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (-1+y\right ) \left (-2+y\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1597

\[ {}y y^{\prime }+x = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (-2+y\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1604

\[ {}y^{\prime }+y = \frac {2 x \,{\mathrm e}^{-x}}{1+y \,{\mathrm e}^{x}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

1605

\[ {}y^{\prime } x -2 y = \frac {x^{6}}{y+x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1606

\[ {}y^{\prime }-y = \frac {\left (x +1\right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1607

\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-y \,{\mathrm e}^{-2 x}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1613

\[ {}y^{\prime } = 2 y x \]

[_separable]

1617

\[ {}y^{\prime } = x \left (-1+y^{2}\right )^{{2}/{3}} \]

[_separable]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1622

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1623

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1636

\[ {}y^{\prime }-y x = x y^{{3}/{2}} \]
i.c.

[_separable]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1649

\[ {}y^{\prime } = \frac {y x +y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1656

\[ {}\left (-y+y^{\prime } x \right ) \left (\ln \left (y\right )-\ln \left (x \right )\right ) = x \]

[[_homogeneous, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1676

\[ {}\left (y+{\mathrm e}^{x^{2}}\right ) y^{\prime } = 2 x \left (y^{2}+y \,{\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 x^{2} y^{2}+6 y x +2}{x^{2} \left (2 y x +3\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1682

\[ {}14 y^{3} x^{2}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1683

\[ {}2 x -2 y^{2}+\left (12 y^{2}-4 y x \right ) y^{\prime } = 0 \]

[_exact, _rational]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

1686

\[ {}-2 \sin \left (x \right ) y^{2}+3 y^{3}-2 x +\left (4 y \cos \left (x \right )+9 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1688

\[ {}3 x^{2}+2 y x +4 y^{2}+\left (x^{2}+8 y x +18 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1693

\[ {}{\mathrm e}^{x} \left (x^{2} y^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

1694

\[ {}x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1695

\[ {}{\mathrm e}^{y x} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{y x}+3 x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1697

\[ {}4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1698

\[ {}-4 y \cos \left (x \right )+4 \sin \left (x \right ) \cos \left (x \right )+\sec \left (x \right )^{2}+\left (4 y-4 \sin \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1700

\[ {}\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime } = 0 \]
i.c.

[_linear]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1703

\[ {}{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

[_exact, _Bernoulli]

1704

\[ {}x^{3} y^{4}+x +\left (x^{4} y^{3}+y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1705

\[ {}3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1706

\[ {}x^{3} y^{4}+2 x +\left (x^{4} y^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1707

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1708

\[ {}y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \]
i.c.

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1709

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \]
i.c.

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1710

\[ {}y^{\prime }+2 y x = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]
i.c.

[[_Abel, ‘2nd type‘, ‘class B‘]]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1716

\[ {}5 y x +2 y+5+2 y^{\prime } x = 0 \]

[_linear]

1717

\[ {}y x +x +2 y+1+\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1719

\[ {}6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1720

\[ {}y^{2}+\left (x y^{2}+6 y x +\frac {1}{y}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1721

\[ {}12 x^{3} y+24 x^{2} y^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1722

\[ {}x^{2} y+4 y x +2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1724

\[ {}\cos \left (x \right ) \cos \left (y\right )+\left (\sin \left (x \right ) \cos \left (y\right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1725

\[ {}2 y x +y^{2}+\left (2 y x +x^{2}-2 x^{2} y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \]

[_rational]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+y^{3} x^{2}\right ) y^{\prime } = 0 \]

[_separable]

1730

\[ {}a \cos \left (x \right ) y-\sin \left (x \right ) y^{2}+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

[_linear]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

1733

\[ {}x^{4} y^{3}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1734

\[ {}3 y x +2 y^{2}+y+\left (x^{2}+2 y x +x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1735

\[ {}12 y x +6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1736

\[ {}3 x^{2} y^{2}+2 y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

1804

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2301

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2302

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

2303

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2305

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2309

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

2310

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2311

\[ {}-2 t y+y^{\prime } = 1 \]
i.c.

[_linear]

2312

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2329

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2338

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2339

\[ {}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

2340

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2341

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2343

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2344

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2345

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2475

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2483

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

2484

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2485

\[ {}-2 t y+y^{\prime } = 1 \]
i.c.

[_linear]

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2510

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2511

\[ {}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

2512

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2516

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2517

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2774

\[ {}y^{\prime } \left (x^{2}+1\right )+y x = 0 \]

[_separable]

2775

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2776

\[ {}1+y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

2777

\[ {}y+y^{\prime } x = 0 \]

[_separable]

2778

\[ {}y^{\prime } = 2 y x \]

[_separable]

2779

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2780

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2781

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2782

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

[_separable]

2783

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2784

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2785

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

2786

\[ {}y+y^{\prime } x = y^{2} \]

[_separable]

2789

\[ {}y+y^{\prime } x = x y \left (y^{\prime }-1\right ) \]

[_separable]

2790

\[ {}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2791

\[ {}y = y x +x^{2} y^{\prime } \]

[_separable]

2792

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2793

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2794

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2795

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2796

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2797

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2798

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2799

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

2800

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2804

\[ {}x +y = y^{\prime } x \]

[_linear]

2805

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2807

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2811

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2812

\[ {}\left (y x -x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2813

\[ {}y+y^{\prime } x = 2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2814

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2818

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2819

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2821

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2823

\[ {}\left (3 y x -2 x^{2}\right ) y^{\prime } = 2 y^{2}-y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2831

\[ {}x -y+\left (1-x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2847

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2848

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2849

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2850

\[ {}x \left (6 y x +5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2851

\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2852

\[ {}2 y x -\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2853

\[ {}y \cos \left (x \right )-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \]

[_exact]

2854

\[ {}\frac {2 y x -1}{y}+\frac {\left (x +3 y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2855

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

2856

\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

2858

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2859

\[ {}\frac {y x +1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2860

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2861

\[ {}y^{2} \csc \left (x \right )^{2}+6 y x -2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime } \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

2862

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2863

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2864

\[ {}2 y \sin \left (y x \right )+\left (2 x \sin \left (y x \right )+y^{3}\right ) y^{\prime } = 0 \]

[_exact]

2865

\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_exact]

2866

\[ {}y \,{\mathrm e}^{y x}+2 y x +\left (x \,{\mathrm e}^{y x}+x^{2}\right ) y^{\prime } = 0 \]

[_exact]

2867

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2868

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2869

\[ {}\frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0 \]

[_exact]

2870

\[ {}y^{\prime } x +\ln \left (x \right )-y = 0 \]

[_linear]

2871

\[ {}y x +\left (y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2872

\[ {}\left (x -2 y x \right ) y^{\prime }+2 y = 0 \]

[_separable]

2874

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2875

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2876

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2877

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2879

\[ {}2 y x +\left (y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2880

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2881

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2882

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

[_rational]

2883

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2884

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2885

\[ {}y \left (1-x^{4} y^{2}\right )+y^{\prime } x = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2886

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2887

\[ {}x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2888

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2891

\[ {}y^{\prime } x +2 y = x^{2} \]

[_linear]

2892

\[ {}y^{\prime }-y x = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_linear]

2893

\[ {}y^{\prime }+2 y x = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2894

\[ {}y^{\prime } = y+3 x^{2} {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

2895

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

2896

\[ {}y x^{\prime }+\left (1+y \right ) x = {\mathrm e}^{y} \]

[_linear]

2897

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2898

\[ {}y^{\prime } x -2 x^{4}-2 y = 0 \]

[_linear]

2899

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

2900

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2901

\[ {}y^{\prime } x = 5 y+x +1 \]

[_linear]

2902

\[ {}x^{2} y^{\prime }+y-2 y x -2 x^{2} = 0 \]

[_linear]

2903

\[ {}2 y+\left (x +1\right ) y^{\prime } = \frac {{\mathrm e}^{x}}{x +1} \]

[_linear]

2904

\[ {}\cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2905

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2906

\[ {}\cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

[_linear]

2907

\[ {}\sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

[_linear]

2908

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

2909

\[ {}y^{2}+1+\left (2 y x -y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2910

\[ {}y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

[_linear]

2911

\[ {}y+y^{3}+4 \left (-1+x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2912

\[ {}2 y-y x -3+y^{\prime } x = 0 \]
i.c.

[_linear]

2913

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2914

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]
i.c.

[_linear]

2915

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_Bernoulli]

2916

\[ {}y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

[_Bernoulli]

2917

\[ {}\cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x} = 0 \]

[‘y=_G(x,y’)‘]

2918

\[ {}\sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t} = 0 \]

[‘y=_G(x,y’)‘]

2919

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2921

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2922

\[ {}x^{2} y^{\prime }+y^{2} = y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2923

\[ {}\csc \left (y\right ) \cot \left (y\right ) y^{\prime } = \csc \left (y\right )+{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

2924

\[ {}y^{\prime }-y x = \frac {x}{y} \]

[_separable]

2925

\[ {}y+y^{\prime } x = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2926

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2928

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

2929

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

2930

\[ {}\left (x \tan \left (y\right )^{2}+x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

[‘y=_G(x,y’)‘]

2937

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

2939

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2940

\[ {}x \ln \left (x \right ) y^{\prime }-x +y = 0 \]

[_linear]

2942

\[ {}2 y x -2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 x^{2} y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

2943

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

2944

\[ {}6+2 y = x y y^{\prime } \]

[_separable]

2946

\[ {}y \sin \left (x \right )-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2947

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2948

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

2949

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

2951

\[ {}2 y x +y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2952

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2953

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

2955

\[ {}2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

2957

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

2959

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

2960

\[ {}y^{\prime }+x +y \cot \left (x \right ) = 0 \]

[_linear]

2961

\[ {}3 x -6 = x y y^{\prime } \]

[_separable]

2962

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

2963

\[ {}2 y^{\prime } x -y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2964

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

2966

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

2967

\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

2968

\[ {}2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 y x -y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2969

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2974

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2975

\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]
i.c.

[_separable]

2976

\[ {}\frac {2 y^{3}-2 y^{3} x^{2}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-y^{3} x^{2}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \]
i.c.

[_exact]

2979

\[ {}y^{\prime } x = x^{4}+4 y \]
i.c.

[_linear]

2980

\[ {}y+y^{\prime } x = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2982

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2983

\[ {}3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2984

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

2985

\[ {}4 x y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]
i.c.

[_separable]

2988

\[ {}2 y x -2 y+1+x \left (x -1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

2990

\[ {}2 y^{\prime } \left (x^{2}+1\right ) = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

2991

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3102

\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

[_linear]

3218

\[ {}4 y^{2} = {y^{\prime }}^{2} x^{2} \]

[_separable]

3219

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3224

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3226

\[ {}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3227

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

3267

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3336

\[ {}y^{\prime } = 2 \]

[_quadrature]

3337

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3338

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3339

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3340

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3341

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3342

\[ {}y^{\prime } = y x \]

[_separable]

3343

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3344

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3345

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

3346

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

3347

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3348

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3349

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1 \]

[_quadrature]

3350

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3351

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3352

\[ {}y^{\prime } = {\mathrm e}^{2 t} t \]

[_quadrature]

3353

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3354

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3355

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3356

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3357

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3358

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3359

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3360

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3361

\[ {}y^{\prime } = {\mathrm e}^{2 t} t \]
i.c.

[_quadrature]

3362

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3363

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3364

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3365

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3366

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3367

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3368

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3369

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3370

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3371

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3372

\[ {}y^{\prime } = -y \]

[_quadrature]

3373

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

3374

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

3375

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

3376

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]

[_linear]

3377

\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right ) \]

[_linear]

3378

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

3379

\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right )^{3} \]

[_linear]

3380

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3381

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3382

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

3383

\[ {}y^{\prime } = -y \tan \left (t \right )+\sec \left (t \right ) \]
i.c.

[_linear]

3384

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3385

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

3386

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3387

\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \]
i.c.

[_linear]

3388

\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \]
i.c.

[_linear]

3389

\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \]
i.c.

[_linear]

3390

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3391

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3392

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3393

\[ {}y \left (2 x^{2} y^{2}+1\right ) y^{\prime }+x \left (1+y^{4}\right ) = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3394

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

3395

\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3396

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 y x = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

3397

\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \]

[_linear]

3398

\[ {}\left (x +y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

3399

\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{y x} \]

[_rational, _Bernoulli]

3401

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3403

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

3404

\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3405

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

3406

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3407

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

3408

\[ {}y^{\prime }-\tan \left (x \right ) y = 1 \]
i.c.

[_linear]

3411

\[ {}y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 1 \]
i.c.

[_linear]

3413

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3414

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3415

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3448

\[ {}y^{\prime } = 2 y x \]

[_separable]

3449

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3450

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3451

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3452

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3453

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3454

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3455

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3456

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3457

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \]

[_linear]

3458

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3459

\[ {}y^{\prime } \left (x^{2}+1\right )+y^{2} = -1 \]
i.c.

[_separable]

3460

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3461

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3462

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3463

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

3464

\[ {}x^{2} y^{\prime }-4 y x = x^{7} \sin \left (x \right ) \]

[_linear]

3465

\[ {}y^{\prime }+2 y x = 2 x^{3} \]

[_linear]

3466

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

3467

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3468

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

3469

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

3470

\[ {}y^{\prime }-\tan \left (x \right ) y = 8 \sin \left (x \right )^{3} \]

[_linear]

3471

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

3472

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3473

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

3474

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3475

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3476

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3477

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3479

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3483

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3488

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3494

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3495

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3510

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

3511

\[ {}y^{\prime } = \frac {1-y^{2}}{2 y x +2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3512

\[ {}y^{\prime } = \frac {\left (1-y \,{\mathrm e}^{y x}\right ) {\mathrm e}^{-y x}}{x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3513

\[ {}y^{\prime } = \frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )} \]

[‘y=_G(x,y’)‘]

3514

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]
i.c.

[_Bernoulli]

3515

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3516

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3519

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

3526

\[ {}y^{\prime } = 2 y x \]

[_separable]

3527

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3528

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3529

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3530

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3531

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3532

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3533

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3534

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3535

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3536

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3537

\[ {}y^{\prime } \left (x^{2}+1\right )+y^{2} = -1 \]
i.c.

[_separable]

3538

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3539

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3540

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3541

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

3542

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

3553

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3559

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[_linear]

3560

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

3561

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

3565

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

3566

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

3567

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

3568

\[ {}-y+y^{\prime } x = x^{2} \ln \left (x \right ) \]

[_linear]

3570

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3572

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3575

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3576

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3581

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3585

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3588

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3589

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3590

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

3594

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3600

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3601

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

3602

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3608

\[ {}y^{\prime } = \frac {y \left (\ln \left (y x \right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

3612

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3613

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3615

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3616

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

3618

\[ {}\cos \left (y x \right )-x y \sin \left (y x \right )-x^{2} \sin \left (y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact]

3619

\[ {}y+3 x^{2}+y^{\prime } x = 0 \]

[_linear]

3620

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3621

\[ {}2 y x +y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

3622

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

3623

\[ {}4 \,{\mathrm e}^{2 x}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3624

\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

3625

\[ {}y \cos \left (y x \right )-\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3626

\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \]

[_exact, _Bernoulli]

3627

\[ {}y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

3628

\[ {}\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

3892

\[ {}5 y x +4 y^{2}+1+\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3893

\[ {}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

3895

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3896

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3899

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3906

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

3907

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

3908

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]

[_linear]

3909

\[ {}x^{2}+x -1+\left (2 y x +y\right ) y^{\prime } = 0 \]

[_separable]

3910

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

3912

\[ {}y^{\prime } = \frac {y-2 x}{x} \]

[_linear]

3913

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3914

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

3915

\[ {}y^{\prime }+y = x^{2}+2 \]

[[_linear, ‘class A‘]]

3916

\[ {}y^{\prime }-\tan \left (x \right ) y = x \]
i.c.

[_linear]

3917

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

3919

\[ {}y^{\prime } x = x +y \]
i.c.

[_linear]

3921

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

3922

\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

3923

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

3924

\[ {}y^{\prime } x +2 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]
i.c.

[_linear]

3925

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

3930

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

3931

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]
i.c.

[_linear]

3932

\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]
i.c.

[_exact, _rational]

3933

\[ {}y y^{\prime } = x \]

[_separable]

3934

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

3935

\[ {}y^{\prime }+y \cot \left (x \right ) = x \]

[_linear]

3936

\[ {}y^{\prime }+y \cot \left (x \right ) = \tan \left (x \right ) \]

[_linear]

3937

\[ {}y^{\prime }+\tan \left (x \right ) y = \cot \left (x \right ) \]

[_linear]

3938

\[ {}y^{\prime }+y \ln \left (x \right ) = x^{-x} \]

[_linear]

3939

\[ {}y+y^{\prime } x = x \]

[_linear]

3940

\[ {}-y+y^{\prime } x = x^{3} \]

[_linear]

3941

\[ {}y^{\prime } x +n y = x^{n} \]

[_linear]

3942

\[ {}y^{\prime } x -n y = x^{n} \]

[_linear]

3943

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

3944

\[ {}\cot \left (x \right ) y^{\prime }+y = x \]

[_linear]

3945

\[ {}\cot \left (x \right ) y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

3946

\[ {}\tan \left (x \right ) y^{\prime }+y = \cot \left (x \right ) \]

[_linear]

3947

\[ {}\tan \left (x \right ) y^{\prime } = y-\cos \left (x \right ) \]

[_linear]

3948

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

3949

\[ {}\cos \left (x \right ) y^{\prime }+y = \sin \left (2 x \right ) \]

[_linear]

3950

\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

3951

\[ {}y^{\prime } \sin \left (x \right )+y = \sin \left (2 x \right ) \]

[_linear]

3952

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \]

[_linear]

3953

\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \]

[_linear]

3954

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \]

[_linear]

3955

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \]

[_linear]

3956

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

3957

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

3958

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

3959

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

3960

\[ {}y^{\prime } = x \sec \left (y\right ) \]

[_separable]

3961

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

3962

\[ {}y^{\prime } x = y \]

[_separable]

3963

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

3964

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

3965

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

3966

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

3967

\[ {}y^{\prime }+2 y x = 0 \]
i.c.

[_separable]

3968

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

3969

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

3970

\[ {}y^{\prime }-2 y x = 2 x \]
i.c.

[_separable]

3971

\[ {}y^{\prime } x = y x +y \]
i.c.

[_separable]

3972

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

3973

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

3974

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

3975

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

3976

\[ {}\left (1-x \right ) y^{\prime } = y x \]

[_separable]

3977

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

3978

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

3979

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

[_separable]

3980

\[ {}y \,{\mathrm e}^{2 x} y^{\prime }+2 x = 0 \]
i.c.

[_separable]

3981

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

3982

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3983

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3984

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3985

\[ {}x^{2} y^{\prime }-2 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3987

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

3993

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3994

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

3995

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

3997

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

3998

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

3999

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

4000

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4001

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4002

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4003

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

4004

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4005

\[ {}y x -1+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4006

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4007

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4008

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4009

\[ {}y^{\prime } x = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4010

\[ {}\left (x +y\right ) y^{\prime } = -x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4012

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

4013

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

4014

\[ {}2 y x +y^{\prime } \left (x^{2}+1\right ) = \cot \left (x \right ) \]

[_linear]

4015

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

4016

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

4017

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

4018

\[ {}\left (1-y x \right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4022

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

4023

\[ {}y+y^{\prime } x = x \cos \left (x \right ) \]

[_linear]

4024

\[ {}\left (y x -x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4025

\[ {}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4026

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

4027

\[ {}y+y^{\prime } x = x^{2} \cos \left (x \right ) \]

[_linear]

4029

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

4030

\[ {}y^{2} {\mathrm e}^{y x}+\cos \left (x \right )+\left ({\mathrm e}^{y x}+x y \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

4031

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4032

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

4033

\[ {}y^{2}-3 y x -2 x^{2} = \left (x^{2}-y x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4034

\[ {}2 y x +y^{\prime } \left (x^{2}+1\right ) = 4 x^{3} \]

[_linear]

4035

\[ {}{\mathrm e}^{x} \sin \left (y\right )-y \sin \left (y x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )-x \sin \left (y x \right )\right ) y^{\prime } = 0 \]

[_exact]

4036

\[ {}\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 2 y x -{\mathrm e}^{y}-x \]

[_exact]

4037

\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

4038

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

4040

\[ {}\ln \left (x \right ) y^{\prime }+\frac {x +y}{x} = 0 \]

[_linear]

4041

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]
i.c.

[_exact]

4042

\[ {}y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0 \]

[_exact]

4043

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4044

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

4048

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4049

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4051

\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \]

[_separable]

4055

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4060

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4061

\[ {}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4066

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4069

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

4070

\[ {}2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4071

\[ {}x y^{2}+x -2 y+3+\left (x^{2} y-2 x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4072

\[ {}3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4073

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4074

\[ {}2 x \left (3 x +y-y \,{\mathrm e}^{-x^{2}}\right )+\left (x^{2}+3 y^{2}+{\mathrm e}^{-x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

4075

\[ {}3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 y x -y \sin \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

4077

\[ {}x^{2}-\sin \left (y\right )^{2}+x \sin \left (2 y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4078

\[ {}y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4079

\[ {}4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4080

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4081

\[ {}x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4082

\[ {}y^{2}+\left (y x +y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4083

\[ {}3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0 \]

[_rational]

4084

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4085

\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \]

[_rational, _Bernoulli]

4086

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

4087

\[ {}y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4088

\[ {}2 x \left (x^{2}-\sin \left (y\right )+1\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4089

\[ {}x^{2}+y+y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4091

\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4092

\[ {}y^{2}-\left (y x +x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4094

\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4095

\[ {}y^{2}+\left (y x +\tan \left (y x \right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4096

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4104

\[ {}1-\left (y-2 y x \right ) y^{\prime } = 0 \]

[_separable]

4105

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4106

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational]

4107

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4108

\[ {}y^{2}+\left (y x +y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4109

\[ {}y = \left ({\mathrm e}^{y}+2 y x -2 x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4111

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

4116

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4119

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4139

\[ {}x y^{2} \left (y+y^{\prime } x \right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4141

\[ {}y^{\prime } = \frac {2+y}{x +1} \]

[_separable]

4143

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

4144

\[ {}2 \sqrt {y x}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4168

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4169

\[ {}y^{\prime } = x +\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

4170

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

[[_linear, ‘class A‘]]

4171

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

4172

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4173

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4174

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

4175

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

4176

\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

[_linear]

4177

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

4178

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4179

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )+y \cos \left (x \right ) \]

[_linear]

4180

\[ {}y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+y \cos \left (x \right ) \]

[_linear]

4181

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4182

\[ {}y^{\prime } = 1-y \cot \left (x \right ) \]

[_linear]

4183

\[ {}y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4184

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4185

\[ {}y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4186

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

[_linear]

4187

\[ {}y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

[_linear]

4189

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

[_linear]

4190

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

[_linear]

4191

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

[_linear]

4192

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4193

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

[_linear]

4194

\[ {}y^{\prime } = \tan \left (x \right ) y \]

[_separable]

4195

\[ {}y^{\prime } = \cos \left (x \right )+\tan \left (x \right ) y \]

[_linear]

4196

\[ {}y^{\prime } = \cos \left (x \right )-\tan \left (x \right ) y \]

[_linear]

4197

\[ {}y^{\prime } = \sec \left (x \right )-\tan \left (x \right ) y \]

[_linear]

4198

\[ {}y^{\prime } = \sin \left (2 x \right )+\tan \left (x \right ) y \]

[_linear]

4199

\[ {}y^{\prime } = \sin \left (2 x \right )-\tan \left (x \right ) y \]

[_linear]

4200

\[ {}y^{\prime } = \sin \left (x \right )+2 \tan \left (x \right ) y \]

[_linear]

4202

\[ {}y^{\prime } = \csc \left (x \right )+3 \tan \left (x \right ) y \]

[_linear]

4203

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4204

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

[_linear]

4205

\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

[_linear]

4206

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

[_linear]

4222

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4227

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4231

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4235

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4236

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4239

\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \]

[_linear]

4241

\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

[_linear]

4242

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4244

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4248

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4249

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4250

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4252

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _Abel]

4255

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4261

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4265

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4266

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4268

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4269

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

4270

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

4273

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4275

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4276

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

4277

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4278

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

4279

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4280

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4283

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

4284

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

4285

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4289

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4291

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4292

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

4293

\[ {}y^{\prime }+y \ln \left (x \right ) \ln \left (y\right ) = 0 \]

[_separable]

4295

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

4297

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

4298

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

[_linear]

4302

\[ {}y^{\prime } x = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4303

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

4304

\[ {}y^{\prime } x +x^{2}-y = 0 \]

[_linear]

4305

\[ {}y^{\prime } x = x^{3}-y \]

[_linear]

4306

\[ {}y^{\prime } x = 1+x^{3}+y \]

[_linear]

4307

\[ {}y^{\prime } x = x^{m}+y \]

[_linear]

4308

\[ {}y^{\prime } x = x \sin \left (x \right )-y \]

[_linear]

4309

\[ {}y^{\prime } x = x^{2} \sin \left (x \right )+y \]

[_linear]

4310

\[ {}y^{\prime } x = x^{n} \ln \left (x \right )-y \]

[_linear]

4311

\[ {}y^{\prime } x = \sin \left (x \right )-2 y \]

[_linear]

4312

\[ {}y^{\prime } x = a y \]

[_separable]

4313

\[ {}y^{\prime } x = 1+x +a y \]

[_linear]

4314

\[ {}y^{\prime } x = a x +b y \]

[_linear]

4315

\[ {}y^{\prime } x = a \,x^{2}+b y \]

[_linear]

4316

\[ {}y^{\prime } x = a +b \,x^{n}+c y \]

[_linear]

4317

\[ {}y^{\prime } x +2+\left (3-x \right ) y = 0 \]

[_linear]

4318

\[ {}y^{\prime } x +x +\left (a x +2\right ) y = 0 \]

[_linear]

4319

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4320

\[ {}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4321

\[ {}y^{\prime } x = a x -\left (-b \,x^{2}+1\right ) y \]

[_linear]

4322

\[ {}y^{\prime } x +x +\left (-a \,x^{2}+2\right ) y = 0 \]

[_linear]

4324

\[ {}y^{\prime } x = x^{2}+y \left (1+y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4326

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4332

\[ {}y^{\prime } x +\left (1-y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4333

\[ {}y^{\prime } x = \left (1-y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4334

\[ {}y^{\prime } x = \left (y x +1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4337

\[ {}y^{\prime } x = y \left (1+2 y x \right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4345

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4346

\[ {}y^{\prime } x = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

4347

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4348

\[ {}y^{\prime } x +\left (1-x y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4349

\[ {}y+y^{\prime } x = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4352

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4353

\[ {}y^{\prime } x +2 y = \sqrt {1+y^{2}} \]

[_separable]

4359

\[ {}y^{\prime } x +\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

4364

\[ {}y^{\prime } x +y+2 x \sec \left (y x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4369

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

4375

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

4376

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4377

\[ {}y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

4381

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

[_linear]

4382

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

4383

\[ {}\left (x +1\right ) y^{\prime } = {\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \]

[_linear]

4388

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4389

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

4390

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

4391

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4392

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4393

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

4394

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4396

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

4398

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4399

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4401

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4402

\[ {}\left (1-2 x \right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

4403

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4404

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

[_linear]

4408

\[ {}3 y^{\prime } x = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

[_Bernoulli]

4409

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4410

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+y x \]

[_linear]

4411

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-y x \]

[_linear]

4412

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

4413

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

4414

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4415

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = x \left (1-{\mathrm e}^{-2 x}\right )-2 \]

[_linear]

4416

\[ {}x^{2} y^{\prime }+2 x \left (1-x \right ) y = {\mathrm e}^{x} \left (2 \,{\mathrm e}^{x}-1\right ) \]

[_linear]

4420

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4424

\[ {}x^{2} y^{\prime }+2+x y \left (4+y x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4426

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4428

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4437

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-x^{2}+y \]

[_linear]

4438

\[ {}\left (-x^{2}+1\right ) y^{\prime }+1 = y x \]

[_linear]

4439

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-y x \]

[_linear]

4440

\[ {}y^{\prime } \left (x^{2}+1\right )+a +y x = 0 \]

[_linear]

4441

\[ {}y^{\prime } \left (x^{2}+1\right )+a -y x = 0 \]

[_linear]

4442

\[ {}\left (-x^{2}+1\right ) y^{\prime }+a -y x = 0 \]

[_linear]

4443

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +y x = 0 \]

[_separable]

4444

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2}+y x = 0 \]

[_linear]

4445

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x^{2}+y x = 0 \]

[_linear]

4446

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (x^{2}+1\right )-y x \]

[_linear]

4447

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (3 x^{2}-y\right ) \]

[_linear]

4448

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 y x = 0 \]

[_separable]

4449

\[ {}y^{\prime } \left (x^{2}+1\right ) = 2 x \left (x -y\right ) \]

[_linear]

4450

\[ {}y^{\prime } \left (x^{2}+1\right ) = 2 x \left (x^{2}+1\right )^{2}+2 y x \]

[_linear]

4451

\[ {}\left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right ) = 2 y x \]

[_linear]

4452

\[ {}y^{\prime } \left (x^{2}+1\right ) = \tan \left (x \right )-2 y x \]

[_linear]

4453

\[ {}\left (-x^{2}+1\right ) y^{\prime } = a +4 y x \]

[_linear]

4454

\[ {}y^{\prime } \left (x^{2}+1\right ) = \left (2 b x +a \right ) y \]

[_separable]

4455

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1+y^{2} \]

[_separable]

4456

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4459

\[ {}y^{\prime } \left (x^{2}+1\right )+x y \left (1-y\right ) = 0 \]

[_separable]

4460

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4463

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \]

[_linear]

4465

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +y x \]

[_linear]

4466

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4469

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2} = 0 \]

[_separable]

4470

\[ {}x \left (1-x \right ) y^{\prime } = a +\left (x +1\right ) y \]

[_linear]

4471

\[ {}x \left (1-x \right ) y^{\prime } = 2 y x +2 \]

[_linear]

4472

\[ {}x \left (1-x \right ) y^{\prime } = 2 y x -2 \]

[_linear]

4473

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

4474

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

4475

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

4476

\[ {}x \left (1-x \right ) y^{\prime }+2-3 y x +y = 0 \]

[_linear]

4477

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

4478

\[ {}\left (x -2\right ) \left (x -3\right ) y^{\prime }+x^{2}-8 y+3 y x = 0 \]

[_linear]

4480

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4482

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4483

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

4487

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4488

\[ {}2 x^{2} y^{\prime }+x \cot \left (x \right )-1+2 x^{2} y \cot \left (x \right ) = 0 \]

[_linear]

4489

\[ {}2 x^{2} y^{\prime }+1+2 y x -x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4491

\[ {}2 \left (-x^{2}+1\right ) y^{\prime } = \sqrt {-x^{2}+1}+\left (x +1\right ) y \]

[_linear]

4492

\[ {}x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y = 0 \]

[_linear]

4493

\[ {}x \left (1-2 x \right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4494

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y = 0 \]

[_linear]

4496

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4497

\[ {}4 y^{\prime } \left (x^{2}+1\right )-4 y x -x^{2} = 0 \]

[_linear]

4500

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

4501

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4503

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

4504

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

4506

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4513

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

4514

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

4515

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

4516

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a -x^{2} y \]

[_linear]

4517

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4518

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4519

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4520

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

4521

\[ {}x \left (x^{2}+1\right ) y^{\prime } = 2-4 x^{2} y \]

[_linear]

4522

\[ {}x \left (x^{2}+1\right ) y^{\prime } = x -\left (5 x^{2}+3\right ) y \]

[_linear]

4526

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4533

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = 2 x -\left (-4 x^{3}+1\right ) y \]

[_linear]

4536

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4538

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

4541

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

4547

\[ {}\sqrt {x^{2}+1}\, y^{\prime } = 2 x -y \]

[_linear]

4550

\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \]

[_linear]

4555

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4556

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

4563

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4564

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

4567

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

4569

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

4570

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

4571

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

4572

\[ {}\left (\operatorname {a0} +\operatorname {a1} \sin \left (x \right )^{2}\right ) y^{\prime }+\operatorname {a2} x \left (\operatorname {a3} +\operatorname {a1} \sin \left (x \right )^{2}\right )+\operatorname {a1} y \sin \left (2 x \right ) = 0 \]

[_linear]

4573

\[ {}\left (x -{\mathrm e}^{x}\right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[_linear]

4574

\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (1+\ln \left (x \right )\right )-y \]

[_linear]

4575

\[ {}y y^{\prime }+x = 0 \]

[_separable]

4576

\[ {}y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

4579

\[ {}y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0 \]

[_separable]

4581

\[ {}y y^{\prime }+4 \left (x +1\right ) x +y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4582

\[ {}y y^{\prime } = a x +b y^{2} \]

[_rational, _Bernoulli]

4583

\[ {}y y^{\prime } = b \cos \left (x +c \right )+a y^{2} \]

[_Bernoulli]

4584

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4585

\[ {}y y^{\prime } = a x +b x y^{2} \]

[_separable]

4586

\[ {}y y^{\prime } = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \]

[_Bernoulli]

4587

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

4588

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

4591

\[ {}\left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

[_separable]

4592

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4593

\[ {}\left (x -y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4594

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4595

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4596

\[ {}1-y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

4597

\[ {}\left (x -y\right ) y^{\prime } = y \left (1+2 y x \right ) \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4598

\[ {}\left (x +y\right ) y^{\prime }+\tan \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4601

\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4604

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4606

\[ {}\left (3+2 x -y\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4608

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4610

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4615

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

4616

\[ {}\left (x^{2}-y\right ) y^{\prime } = 4 y x \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4617

\[ {}\left (y-\cot \left (x \right ) \csc \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+y \cos \left (x \right )\right ) y = 0 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

4618

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4619

\[ {}2 y y^{\prime } = x y^{2}+x^{3} \]

[_rational, _Bernoulli]

4620

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4621

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4622

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4623

\[ {}\left (1+x -2 y\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4626

\[ {}2 \left (x +y\right ) y^{\prime }+x^{2}+2 y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4627

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4631

\[ {}\left (x^{3}+2 y\right ) y^{\prime } = 3 x \left (2-y x \right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4633

\[ {}\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

4634

\[ {}3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4635

\[ {}3 \left (2-y\right ) y^{\prime }+y x = 0 \]

[_separable]

4641

\[ {}\left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4643

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = 3+x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4644

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4654

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4658

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4659

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4660

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4661

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

4662

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4663

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4664

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4665

\[ {}x y y^{\prime } = a \,x^{3} \cos \left (x \right )+y^{2} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

4668

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

4669

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4670

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

4673

\[ {}\left (y x +1\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4674

\[ {}x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[_separable]

4675

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

4676

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

4677

\[ {}x \left (2+y\right ) y^{\prime }+a x = 0 \]

[_quadrature]

4678

\[ {}\left (2+3 x -y x \right ) y^{\prime }+y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4681

\[ {}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

[_separable]

4683

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4685

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4694

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = y x \]

[_separable]

4695

\[ {}2 x y y^{\prime }+1-2 x^{3}-y^{2} = 0 \]

[_rational, _Bernoulli]

4696

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

4697

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4698

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4699

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4700

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

4701

\[ {}2 x y y^{\prime }+x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

[_rational, _Bernoulli]

4702

\[ {}\left (3-x +2 y x \right ) y^{\prime }+3 x^{2}-y+y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4703

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4705

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4706

\[ {}x \left (1+x -2 y\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4707

\[ {}x \left (1-x -2 y\right ) y^{\prime }+\left (2 x +y+1\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4708

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4709

\[ {}2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

[_exact, _rational, _Bernoulli]

4711

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4712

\[ {}\left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4713

\[ {}3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right ) = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4714

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4715

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4716

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

4717

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4719

\[ {}\left (1-x^{2} y\right ) y^{\prime }+1-x y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4721

\[ {}x \left (1-y x \right ) y^{\prime }+\left (y x +1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4722

\[ {}x \left (2+y x \right ) y^{\prime } = 3+2 x^{3}-2 y-x y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4723

\[ {}x \left (2-y x \right ) y^{\prime }+2 y-x y^{2} \left (y x +1\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4724

\[ {}x \left (3-y x \right ) y^{\prime } = y \left (y x -1\right ) \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4725

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

4726

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

4727

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

4728

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

[_rational, _Bernoulli]

4729

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4730

\[ {}x \left (1-2 y x \right ) y^{\prime }+y \left (1+2 y x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4731

\[ {}x \left (1+2 y x \right ) y^{\prime }+\left (2+3 y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4732

\[ {}x \left (1+2 y x \right ) y^{\prime }+\left (1+2 y x -x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4734

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

4735

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4737

\[ {}\left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4738

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4739

\[ {}x \left (3-2 x^{2} y\right ) y^{\prime } = 4 x -3 y+3 x^{2} y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4742

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4743

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4748

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

4749

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

4750

\[ {}\left (x +y^{2}\right ) y^{\prime }+y = b x +a \]

[_exact, _rational]

4751

\[ {}\left (x -y^{2}\right ) y^{\prime } = x^{2}-y \]

[_exact, _rational]

4752

\[ {}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4753

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4754

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4755

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4756

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4758

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 y x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4759

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 y x = 0 \]

[_exact, _rational]

4760

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

[_rational]

4761

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4762

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 x^{3} y \]

[[_homogeneous, ‘class G‘], _rational]

4763

\[ {}y \left (1+y\right ) y^{\prime } = \left (x +1\right ) x \]

[_separable]

4765

\[ {}\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4766

\[ {}\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4767

\[ {}\left (1+y+y x +y^{2}\right ) y^{\prime }+1+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4773

\[ {}\left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime } = x^{2}-4 y x -2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4777

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

[_rational, _Bernoulli]

4778

\[ {}\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x = 0 \]

[_exact, _rational]

4780

\[ {}3 \left (x^{2}-y^{2}\right ) y^{\prime }+3 \,{\mathrm e}^{x}+6 x y \left (x +1\right )-2 y^{3} = 0 \]

[‘y=_G(x,y’)‘]

4781

\[ {}\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4783

\[ {}\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 x y^{2} = 0 \]

[_exact, _rational]

4784

\[ {}\left (x -6 y\right )^{2} y^{\prime }+a +2 y x -6 y^{2} = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

4785

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4788

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4789

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4792

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4793

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4796

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

4798

\[ {}x \left (x^{2}-y x -y^{2}\right ) y^{\prime } = \left (x^{2}+y x -y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4799

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4800

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4804

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4805

\[ {}\left (1-4 x +3 x y^{2}\right ) y^{\prime } = \left (2-y^{2}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4806

\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

4807

\[ {}3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 y x -2 y^{3} = 0 \]

[_rational]

4809

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4810

\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+y x -3 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4811

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4812

\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4813

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

4814

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = x y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

4815

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = \left (y x +1\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4816

\[ {}x \left (x y^{2}+1\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4817

\[ {}x \left (x y^{2}+1\right ) y^{\prime } = \left (2-3 x y^{2}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4819

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

4820

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

4821

\[ {}\left (1-x^{3}+6 x^{2} y^{2}\right ) y^{\prime } = \left (6+3 y x -4 y^{3}\right ) x \]

[_exact, _rational]

4822

\[ {}x \left (3+5 x -12 x y^{2}+4 x^{2} y\right ) y^{\prime }+\left (3+10 x -8 x y^{2}+6 x^{2} y\right ) y = 0 \]

[_exact, _rational]

4823

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

4824

\[ {}x \left (1-y x \right )^{2} y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4825

\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

4826

\[ {}\left (3 x -y^{3}\right ) y^{\prime } = x^{2}-3 y \]

[_exact, _rational]

4827

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4828

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4829

\[ {}\left (x -x^{2} y-y^{3}\right ) y^{\prime } = x^{3}-y+x y^{2} \]

[_exact, _rational]

4830

\[ {}\left (a^{2} x +y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \]

[_rational]

4831

\[ {}\left (a +x^{2}+y^{2}\right ) y y^{\prime } = x \left (a -x^{2}-y^{2}\right ) \]

[_exact, _rational]

4832

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4835

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

4837

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4839

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4840

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4842

\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4844

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4846

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4847

\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4848

\[ {}x \left (x +y+2 y^{3}\right ) y^{\prime } = \left (x -y\right ) y \]

[_rational]

4849

\[ {}\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4850

\[ {}x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y = 0 \]

[_rational]

4852

\[ {}\left (2-10 y^{3} x^{2}+3 y^{2}\right ) y^{\prime } = x \left (1+5 y^{4}\right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4853

\[ {}x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0 \]

[_rational]

4854

\[ {}x \left (1-2 y^{3} x^{2}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y = 0 \]

[_rational]

4855

\[ {}x \left (1-y x \right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (y x +1\right ) \left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4856

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class G‘], _rational]

4857

\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \]

[[_homogeneous, ‘class G‘], _rational]

4859

\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

4860

\[ {}\left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime } = \left (2+y^{3}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4863

\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4864

\[ {}x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4865

\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class G‘], _rational]

4866

\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4867

\[ {}x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0 \]

[_rational]

4871

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

4872

\[ {}y^{\prime } \sqrt {-y^{2}+b^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

4873

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

4884

\[ {}y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0 \]

unknown

4885

\[ {}\left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0 \]

[_exact]

4886

\[ {}\left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0 \]

[NONE]

4887

\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

4888

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4889

\[ {}\left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0 \]

[_exact]

4890

\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

4891

\[ {}\left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0 \]

[_exact]

4892

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

4903

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

4905

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

4919

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

4920

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

4934

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

4946

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x = 0 \]

[_quadrature]

4951

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

4953

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0 \]

[_quadrature]

4956

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 y x = 0 \]

[_quadrature]

4962

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

4964

\[ {}{y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+2 y x = 0 \]

[_quadrature]

4966

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

4969

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

4970

\[ {}{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

4995

\[ {}x {y^{\prime }}^{2}-y^{\prime } \left (x^{2}+1\right )+x = 0 \]

[_quadrature]

5011

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5014

\[ {}x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y = 0 \]

[_quadrature]

5015

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5016

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5031

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5032

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5034

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5036

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5045

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5047

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5049

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5053

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5061

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5067

\[ {}x^{3} {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5072

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5081

\[ {}y {y^{\prime }}^{2} = {\mathrm e}^{2 x} \]

[[_1st_order, _with_linear_symmetries]]

5087

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5089

\[ {}y {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5090

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5097

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5098

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5099

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

5100

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5101

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5104

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0 \]

[_separable]

5107

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5112

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5124

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5125

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5129

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5130

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5139

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5154

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5173

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5174

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5175

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5176

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5177

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5184

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

5190

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5197

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5249

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5252

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

5254

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5255

\[ {}y+x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5259

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5260

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5261

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5263

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

5264

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

5265

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5268

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5272

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

5273

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

5274

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

5275

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5276

\[ {}y^{\prime } \left (x^{2}+1\right )+y = \arctan \left (x \right ) \]

[_linear]

5277

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5278

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

5281

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5282

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5283

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5284

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5285

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

5286

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5287

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

5288

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

[_exact]

5289

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

5291

\[ {}2 y x +\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5292

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5297

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5298

\[ {}\left (x^{2} y^{2}+y x \right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5299

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+y x +1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-y x +1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5300

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5301

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5302

\[ {}2 y x +\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5303

\[ {}y+\left (-x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5310

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5311

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5331

\[ {}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5333

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5337

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5338

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5339

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5341

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5344

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5347

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

5351

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5354

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5357

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5359

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

5360

\[ {}\frac {1+2 y x}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5361

\[ {}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5362

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5363

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5364

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5365

\[ {}x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 y x \right ) y^{\prime } = 0 \]

[_exact]

5366

\[ {}2 x +y \cos \left (x \right )+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5367

\[ {}x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5368

\[ {}4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5369

\[ {}{\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

5370

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5371

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

5372

\[ {}y^{2}+y-y^{\prime } x = 0 \]

[_separable]

5373

\[ {}y \sec \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

5374

\[ {}{\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5375

\[ {}y x +y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

5376

\[ {}y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5377

\[ {}3 y-y^{\prime } x = 0 \]

[_separable]

5378

\[ {}y-3 y^{\prime } x = 0 \]

[_separable]

5380

\[ {}2 y x +x^{2}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5381

\[ {}x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

5382

\[ {}x^{2}+y^{2}+x +x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

5383

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5384

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5385

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5386

\[ {}x^{4} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

[_rational]

5387

\[ {}y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5388

\[ {}\arctan \left (y x \right )+\frac {y x -2 x y^{2}}{1+x^{2} y^{2}}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{1+x^{2} y^{2}} = 0 \]

[_exact]

5389

\[ {}{\mathrm e}^{x} \left (x +1\right )+\left (y \,{\mathrm e}^{y}-x \,{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5390

\[ {}\frac {y x +1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5391

\[ {}y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5392

\[ {}\left (2 x +y+1\right ) y-x \left (2 y+x -1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5393

\[ {}y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5394

\[ {}y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5395

\[ {}3 \left (x +y\right )^{2}+x \left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5396

\[ {}y-\left (x^{2}+y^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

5397

\[ {}2 y x +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5398

\[ {}2 y x +x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

5399

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

5400

\[ {}y^{\prime }+a y = b \]

[_quadrature]

5401

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5402

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

5403

\[ {}r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

[_linear]

5404

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

5407

\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

[_linear]

5408

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

5409

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

5410

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

5411

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

[_linear]

5412

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5413

\[ {}y^{\prime } x +y = x \sin \left (x \right ) \]

[_linear]

5414

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

5415

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5416

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

5418

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

5421

\[ {}\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5424

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5426

\[ {}2 x y y^{\prime }+\left (x +1\right ) y^{2} = {\mathrm e}^{x} \]

[_Bernoulli]

5427

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2} \]

[‘y=_G(x,y’)‘]

5429

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5430

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

5433

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5434

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5437

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5439

\[ {}y^{\prime } x +y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5440

\[ {}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0 \]

[_separable]

5441

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

5445

\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \]

[[_linear, ‘class A‘]]

5446

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5447

\[ {}\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5449

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]

[_linear]

5450

\[ {}y^{\prime } x -y \left (\ln \left (y x \right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

5451

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5452

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

5454

\[ {}y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5455

\[ {}\left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5457

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

5458

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5459

\[ {}\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2} = 0 \]

[_separable]

5460

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5461

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 y x +x^{2}+3 = 0 \]

[_exact, _rational]

5462

\[ {}y^{\prime } \cos \left (x \right )+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

5463

\[ {}y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5464

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5465

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 y x = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5466

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5467

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5468

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5469

\[ {}\left (y x -1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5470

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5471

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5473

\[ {}\left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2} = 0 \]

[_rational]

5474

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

5580

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

5585

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

5589

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

5591

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5592

\[ {}y^{\prime } = a y^{2} x \]

[_separable]

5593

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5594

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

5595

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

5596

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

5597

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

5598

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

5599

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

5652

\[ {}y^{\prime } = y \]

[_quadrature]

5653

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

5656

\[ {}1+y^{2}+x y y^{\prime } = 0 \]
i.c.

[_separable]

5657

\[ {}x y y^{\prime }-y x = y \]
i.c.

[_quadrature]

5658

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

5659

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

5660

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

5661

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

5662

\[ {}y^{\prime }-y x = x \]
i.c.

[_separable]

5663

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

5664

\[ {}\left (x +y x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

5680

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5681

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

5682

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5683

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5684

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

unknown

5685

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5687

\[ {}y x +\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5688

\[ {}y^{2}-y x +\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5691

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

5693

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

5768

\[ {}x^{2} y^{\prime }-y x = \frac {1}{x} \]

[_linear]

5769

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

5772

\[ {}2 x -y \sin \left (2 x \right ) = \left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5774

\[ {}3 x^{3} y^{2} y^{\prime }-y^{3} x^{2} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5777

\[ {}u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

5778

\[ {}y+2 x -y^{\prime } x = 0 \]

[_linear]

5784

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5785

\[ {}\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5786

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

5788

\[ {}y^{\prime }+y x = \frac {x}{y} \]

[_separable]

5790

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

[_linear]

5792

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

5793

\[ {}-y+y^{\prime } x = x^{2} \]
i.c.

[_linear]

5797

\[ {}y^{\prime } x = y x +y \]

[_separable]

5799

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

5801

\[ {}y^{\prime } x = y \]

[_separable]

5817

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

5819

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

5820

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

5822

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

5823

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

5824

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

5825

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

5826

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

5827

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

5828

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

5829

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

5830

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

5831

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

5832

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

5833

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

5834

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

5835

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

5836

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

5837

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

5838

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

5839

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

5840

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

5841

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5842

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

5843

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

5844

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

5845

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

5846

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

5847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

5848

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

5849

\[ {}y^{\prime } = x y^{3} \]

[_separable]

5850

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5851

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5852

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5853

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

5854

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

5856

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

5857

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right ) \]

[_linear]

5859

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

5860

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

5861

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

5862

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

5863

\[ {}y^{\prime } x +2 y = \frac {1}{x^{3}} \]

[_linear]

5864

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

5865

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

5866

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

5867

\[ {}y^{\prime } x +3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

5868

\[ {}y^{\prime } \left (x^{2}+1\right )+y x -x = 0 \]

[_separable]

5869

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

5870

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

5871

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

5872

\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

5873

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

5874

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

5875

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

5877

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

5878

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

5879

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

5880

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

5881

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

5882

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

5883

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

5885

\[ {}y \,{\mathrm e}^{y x}+2 x +\left (x \,{\mathrm e}^{y x}-2 y\right ) y^{\prime } = 0 \]

[_exact]

5886

\[ {}y^{\prime }+y x = 0 \]

[_separable]

5887

\[ {}y^{2}+\left (2 y x +\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5888

\[ {}2 x +y \cos \left (y x \right )+\left (x \cos \left (y x \right )-2 y\right ) y^{\prime } = 0 \]

[_exact]

5889

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

[_linear]

5890

\[ {}2 y x +3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

[_linear]

5891

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5892

\[ {}{\mathrm e}^{x} \sin \left (y\right )-3 x^{2}+\left ({\mathrm e}^{x} \cos \left (y\right )+\frac {1}{3 y^{{2}/{3}}}\right ) y^{\prime } = 0 \]

[_exact]

5893

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

[_exact]

5894

\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

[_linear]

5895

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

[_separable]

5896

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

[_linear]

5897

\[ {}y \,{\mathrm e}^{y x}-\frac {1}{y}+\left (x \,{\mathrm e}^{y x}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

5898

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5899

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 y x -\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5900

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{-1+y} \]

[_separable]

5901

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

5902

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 y x -3 x^{2} = 0 \]

[_exact, _rational]

5903

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

5904

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

5905

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

5959

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

5960

\[ {}x^{2} y^{\prime }+2 y x -x +1 = 0 \]
i.c.

[_linear]

5961

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

5962

\[ {}2 y x +x^{2} y^{\prime } = \sinh \left (x \right ) \]
i.c.

[_linear]

5963

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

5964

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

5965

\[ {}y^{\prime } \left (x^{2}+1\right ) = y x +1 \]

[_linear]

5966

\[ {}y^{\prime }+y x = x y^{2} \]

[_separable]

5976

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

5977

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

5979

\[ {}y^{\prime } x = x^{2}+2 x -3 \]

[_quadrature]

5981

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

5982

\[ {}-y+y^{\prime } x = x^{2} \]

[_linear]

5983

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

5984

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

5986

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x = x \]

[_separable]

5987

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \]

[_linear]

5988

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

5989

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5991

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

5992

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

5993

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

5994

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5996

\[ {}\left (-x +2 y\right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5997

\[ {}y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5998

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6000

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6007

\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6010

\[ {}y \left (y x +1\right )+x \left (1+y x +x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6016

\[ {}\left (-x^{2}+1\right ) y^{\prime } = y x +1 \]

[_linear]

6020

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6021

\[ {}y^{\prime }-\tan \left (x \right ) y = \cos \left (x \right )-2 x \sin \left (x \right ) \]
i.c.

[_linear]

6022

\[ {}y^{\prime } = \frac {2 y x +y^{2}}{x^{2}+2 y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6023

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (1+y\right ) \]

[_separable]

6024

\[ {}y^{\prime } x +2 y = 3 x -1 \]
i.c.

[_linear]

6025

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6026

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6027

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]
i.c.

[_linear]

6028

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6029

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6030

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6031

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

6032

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]
i.c.

[_linear]

6033

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6034

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

[_linear]

6035

\[ {}y x +y^{\prime } \left (x^{2}+1\right ) = \left (x^{2}+1\right )^{{3}/{2}} \]

[_linear]

6036

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6037

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6038

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

6039

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6076

\[ {}y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

6077

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

6078

\[ {}y^{\prime }-5 y = x^{2} {\mathrm e}^{x}-x \,{\mathrm e}^{5 x} \]

[[_linear, ‘class A‘]]

6084

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6085

\[ {}y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

[[_linear, ‘class A‘]]

6086

\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_linear, ‘class A‘]]

6094

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

6103

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

6130

\[ {}y^{\prime } x = 2 y \]

[_separable]

6131

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6133

\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6140

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6141

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6142

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6143

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6144

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6145

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6147

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6149

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6150

\[ {}y x +y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

6151

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6155

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6156

\[ {}y \left (1+2 y x \right )+x \left (1-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6157

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6158

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6160

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6161

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6162

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6166

\[ {}x^{2}-y-y^{\prime } x = 0 \]

[_linear]

6167

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6168

\[ {}x +y \cos \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_linear]

6169

\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6170

\[ {}4 x^{3} y^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

6171

\[ {}2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6172

\[ {}x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime } = 0 \]

[_exact]

6173

\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6174

\[ {}y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (x +1\right ) y\right ) y^{\prime } = 0 \]

[_exact, _rational]

6175

\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

[_exact]

6176

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6177

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6178

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6179

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6181

\[ {}x -x^{2}-y^{2}+y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

6182

\[ {}2 y-3 x +y^{\prime } x = 0 \]

[_linear]

6183

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6184

\[ {}-y-3 x^{2} \left (x^{2}+y^{2}\right )+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6185

\[ {}y-\ln \left (x \right )-y^{\prime } x = 0 \]

[_linear]

6186

\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6187

\[ {}y x -2 y^{2}-\left (x^{2}-3 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6188

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6189

\[ {}2 y-3 x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6190

\[ {}y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6191

\[ {}y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

[_rational]

6192

\[ {}-y-x^{2} {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6194

\[ {}2 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

6195

\[ {}y+\left (y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6196

\[ {}3 y^{3}-y x -\left (x^{2}+6 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6197

\[ {}3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6198

\[ {}y \left (x +y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6199

\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6200

\[ {}y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6201

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

6202

\[ {}y^{\prime }+y = 2+2 x \]

[[_linear, ‘class A‘]]

6203

\[ {}y^{\prime }-y = y x \]

[_separable]

6204

\[ {}-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6205

\[ {}i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

6207

\[ {}y+\left (y x +x -3 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6208

\[ {}\left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6209

\[ {}y^{\prime } x +y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6210

\[ {}r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

[_linear]

6211

\[ {}y \left (1+y^{2}\right ) = 2 \left (1-2 x y^{2}\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6212

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

6214

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

6215

\[ {}y^{\prime } x = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

[_linear]

6216

\[ {}2+y^{2}-\left (y x +2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6217

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6219

\[ {}1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6220

\[ {}y^{\prime } x = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

6221

\[ {}L i^{\prime }+R i = E \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

6222

\[ {}x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

[‘y=_G(x,y’)‘]

6224

\[ {}x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

6226

\[ {}y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

6227

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6228

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6355

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

6403

\[ {}y^{\prime }+y x = \frac {1}{x^{3}} \]

[_linear]

6618

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

6619

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

6620

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

6621

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

6622

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

6623

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

6624

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6625

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

6626

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

6627

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

6628

\[ {}y^{\prime }-x y^{2} = 2 y x \]

[_separable]

6629

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

6630

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

6631

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

6632

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

6633

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

[_separable]

6634

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

6635

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

6636

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

6637

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

6638

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

6639

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

6640

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

6641

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

6642

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

6644

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

6645

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6646

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

6651

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

6652

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

[_separable]

6653

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6654

\[ {}y-2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

6656

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6657

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6664

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6666

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6667

\[ {}y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6670

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6671

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6674

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6675

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

6677

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

6680

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

6681

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6682

\[ {}y^{\prime } x = x +\frac {y}{2} \]
i.c.

[_linear]

6683

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6690

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6692

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6710

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

6711

\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6712

\[ {}2 x +3+\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

6738

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

6739

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

6740

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

6743

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

6744

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

6745

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6746

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6747

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6748

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

6751

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

6752

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

6783

\[ {}\left (1+x^{2} y^{2}\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6784

\[ {}2 x^{3} y^{2}-y+\left (2 y^{3} x^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

6791

\[ {}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_separable]

6792

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

6796

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6797

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6798

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6800

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6816

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

6819

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

6820

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

6824

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

6826

\[ {}y^{\prime } = k y \]

[_quadrature]

6827

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

6828

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6829

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

6830

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

6833

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

6834

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

6836

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

6837

\[ {}y^{\prime }+2 y x = x \]

[_separable]

6838

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

6839

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

6840

\[ {}y^{\prime }-\tan \left (x \right ) y = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

6841

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

6842

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

6843

\[ {}2 y x +x^{2} y^{\prime } = 1 \]

[_linear]

6844

\[ {}y^{\prime }+2 y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

6845

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

6846

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6847

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6967

\[ {}y^{\prime } = x^{2} y \]

[_separable]

6968

\[ {}y y^{\prime } = x \]

[_separable]

6969

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

6970

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

6971

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

6972

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6973

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

6974

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

6975

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6976

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6979

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6983

\[ {}2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6984

\[ {}x^{2}+y x +\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

6985

\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

6986

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

6987

\[ {}y^{3} x^{2}-x^{3} y^{2} y^{\prime } = 0 \]

[_separable]

6988

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6989

\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

6990

\[ {}3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x = 0 \]

[_linear]

6991

\[ {}2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \]

[_separable]

6992

\[ {}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

6993

\[ {}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6994

\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_quadrature]

7009

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7010

\[ {}y^{\prime } x = 2 y \]

[_separable]

7011

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7012

\[ {}y^{\prime } = k y \]

[_quadrature]

7015

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7016

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7017

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7018

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7020

\[ {}y^{\prime } = \frac {y^{2}}{y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7021

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

7022

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

7023

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7024

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7025

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7026

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \]

[_quadrature]

7027

\[ {}y^{\prime } \left (x^{2}+1\right ) = \arctan \left (x \right ) \]

[_quadrature]

7028

\[ {}y^{\prime } x = 1 \]

[_quadrature]

7029

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7030

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

[_quadrature]

7031

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7032

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7033

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7034

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7035

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7036

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7037

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7038

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

7039

\[ {}y^{\prime } = 1+2 y x \]

[_linear]

7041

\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7043

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7044

\[ {}y^{\prime } = 4 y x \]

[_separable]

7045

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

7046

\[ {}y^{\prime } \left (x^{2}+1\right )+1+y^{2} = 0 \]

[_separable]

7047

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

7049

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

7050

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

7051

\[ {}x y y^{\prime } = -1+y \]

[_separable]

7052

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7053

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7054

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7055

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7056

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7057

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7058

\[ {}\left (1+y\right ) y^{\prime } = -x^{2}+1 \]
i.c.

[_separable]

7077

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7078

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

7079

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7080

\[ {}y^{\prime }+y x = x y^{4} \]

[_separable]

7081

\[ {}\left ({\mathrm e}^{y}-2 y x \right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7082

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

7084

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7085

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

7086

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7087

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

7088

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

7090

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

7091

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7092

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

7093

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

7094

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7095

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7096

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

[_exact, _rational, _Riccati]

7097

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 y^{3} x^{2}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7098

\[ {}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

7099

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7101

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

7102

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

7103

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

7104

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7105

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

7106

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7107

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7108

\[ {}x^{2} y^{\prime }-3 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7110

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7112

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7113

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

7115

\[ {}x^{2} y^{\prime } = 2 y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7116

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7121

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

7122

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7123

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7124

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7129

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7130

\[ {}y x -1+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7131

\[ {}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7132

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7133

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7134

\[ {}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7135

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7136

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7137

\[ {}y \ln \left (y\right )-2 y x +\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

7138

\[ {}y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7139

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

7153

\[ {}y^{\prime } x +y = x \]

[_linear]

7154

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

7155

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7158

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7159

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

7160

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7161

\[ {}-y+y^{\prime } x = 2 x \]
i.c.

[_linear]

7162

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

7163

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7165

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7167

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7168

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

7305

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

7309

\[ {}y^{\prime } = 2 y x \]

[_separable]

7311

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

7313

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

7315

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

7317

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

7319

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

7321

\[ {}y^{\prime } x = y \]

[_separable]

7323

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7325

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

7326

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

7330

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

7451

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

7671

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

7672

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

7673

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

7674

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

7675

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7676

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

7677

\[ {}x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y = 0 \]

[_quadrature]

7678

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

7679

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7680

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7681

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

7682

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

7683

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7684

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

7685

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7686

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7687

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7688

\[ {}x {y^{\prime }}^{3}-\left (x^{2}+x +y\right ) {y^{\prime }}^{2}+\left (x^{2}+y x +y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7689

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

7705

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7724

\[ {}y = y^{\prime } x +x^{3} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

7770

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

7775

\[ {}y^{2} {y^{\prime }}^{2}-y \left (x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

7781

\[ {}x {y^{\prime }}^{2}-y^{\prime } \left (x^{2}+1\right )+x = 0 \]

[_quadrature]

7786

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

7789

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

7933

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

7934

\[ {}y^{\prime } \left (x^{2}+1\right )+y^{2} = -1 \]
i.c.

[_separable]

7935

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

7936

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

7937

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7938

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7939

\[ {}y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7940

\[ {}y x -1+x^{2} y^{\prime } = 0 \]

[_linear]

7949

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

7950

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

7951

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

7952

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

7953

\[ {}y^{\prime } = 1+y \]

[_quadrature]

7954

\[ {}y^{\prime } = x +1 \]

[_quadrature]

7955

\[ {}y^{\prime } = x \]

[_quadrature]

7956

\[ {}y^{\prime } = y \]

[_quadrature]

7958

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

7959

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

[_linear]

7960

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

7961

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

7962

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

7963

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

7964

\[ {}y^{\prime } = \frac {-y x -1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7966

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

7970

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7980

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

7981

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

7982

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

7994

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8025

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8028

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8030

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8032

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8096

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8125

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

8188

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8216

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

8222

\[ {}y^{\prime } = a \]

[_quadrature]

8223

\[ {}y^{\prime } = x \]

[_quadrature]

8224

\[ {}y^{\prime } = 1 \]

[_quadrature]

8225

\[ {}y^{\prime } = a x \]

[_quadrature]

8226

\[ {}y^{\prime } = a x y \]

[_separable]

8227

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8228

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8229

\[ {}y^{\prime } = y \]

[_quadrature]

8230

\[ {}y^{\prime } = b y \]

[_quadrature]

8233

\[ {}c y^{\prime } = a \]

[_quadrature]

8234

\[ {}c y^{\prime } = a x \]

[_quadrature]

8235

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8236

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8237

\[ {}c y^{\prime } = y \]

[_quadrature]

8238

\[ {}c y^{\prime } = b y \]

[_quadrature]

8243

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

8246

\[ {}y^{\prime } = \sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

8248

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

8257

\[ {}y^{\prime } x = 1 \]

[_quadrature]

8258

\[ {}y^{\prime } x = \sin \left (x \right ) \]

[_quadrature]

8286

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8384

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

8385

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

8393

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

9238

\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \]

[[_linear, ‘class A‘]]

9239

\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \]

[[_linear, ‘class A‘]]

9240

\[ {}y^{\prime }+2 y x -x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

9241

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{2 x} = 0 \]

[_linear]

9242

\[ {}y^{\prime }+y \cos \left (x \right )-\frac {\sin \left (2 x \right )}{2} = 0 \]

[_linear]

9243

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{-\sin \left (x \right )} = 0 \]

[_linear]

9244

\[ {}y^{\prime }+\tan \left (x \right ) y-\sin \left (2 x \right ) = 0 \]

[_linear]

9245

\[ {}y^{\prime }-\left (\sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right )+a \right ) y = 0 \]

[_separable]

9246

\[ {}y^{\prime }+f^{\prime }\left (x \right ) y-f \left (x \right ) f^{\prime }\left (x \right ) = 0 \]

[_linear]

9247

\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \]

[_linear]

9248

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

9253

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

9259

\[ {}y^{\prime }+a y^{2}-b = 0 \]

[_quadrature]

9262

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

9265

\[ {}y^{\prime }-x y^{2}-3 y x = 0 \]

[_separable]

9267

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9271

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9275

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

9277

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

9295

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

9296

\[ {}y^{\prime }-\frac {\sqrt {-1+y^{2}}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

9297

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {-1+y^{2}}} = 0 \]

[_separable]

9300

\[ {}y^{\prime }-\sqrt {\frac {a y^{2}+b y+c}{a \,x^{2}+b x +c}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9301

\[ {}y^{\prime }-\sqrt {\frac {1+y^{3}}{x^{3}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9303

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

9304

\[ {}y^{\prime }-\sqrt {\frac {a y^{4}+b y^{2}+1}{a \,x^{4}+b \,x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9305

\[ {}y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9306

\[ {}y^{\prime }-\sqrt {\frac {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9307

\[ {}y^{\prime }-\sqrt {\frac {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}{a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9309

\[ {}y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}}\right )^{{2}/{3}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9312

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

9325

\[ {}y^{\prime } x -\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

9326

\[ {}y^{\prime } x +y-x \sin \left (x \right ) = 0 \]

[_linear]

9327

\[ {}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

9328

\[ {}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

9329

\[ {}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

9330

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

9332

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

9337

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9344

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

9345

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

9353

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

9354

\[ {}y^{\prime } x -y \left (\ln \left (y x \right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

9357

\[ {}y^{\prime } x +\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

9365

\[ {}2 y^{\prime } x -y-2 x^{3} = 0 \]

[_linear]

9366

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

9367

\[ {}3 y^{\prime } x -3 x \ln \left (x \right ) y^{4}-y = 0 \]

[_Bernoulli]

9368

\[ {}x^{2} y^{\prime }+y-x = 0 \]

[_linear]

9369

\[ {}x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_linear]

9370

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

9372

\[ {}x^{2} y^{\prime }-y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9375

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9376

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9378

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

9383

\[ {}y^{\prime } \left (x^{2}+1\right )+y x -1 = 0 \]

[_linear]

9384

\[ {}y^{\prime } \left (x^{2}+1\right )+y x -x \left (x^{2}+1\right ) = 0 \]

[_linear]

9385

\[ {}y^{\prime } \left (x^{2}+1\right )+2 y x -2 x^{2} = 0 \]

[_linear]

9388

\[ {}\left (x^{2}-1\right ) y^{\prime }-y x +a = 0 \]

[_linear]

9389

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

9393

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x = 0 \]

[_separable]

9394

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

9396

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime }+3 y x -8 y+x^{2} = 0 \]

[_linear]

9400

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (1+4 x \right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9406

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9409

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

9410

\[ {}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

[_linear]

9418

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

9427

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y-\sqrt {a^{2}+x^{2}}+x = 0 \]

[_linear]

9428

\[ {}x y^{\prime } \ln \left (x \right )+y-a x \left (1+\ln \left (x \right )\right ) = 0 \]

[_linear]

9431

\[ {}\cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

9433

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime }-y-\sin \left (x \right )^{3} = 0 \]

[_linear]

9435

\[ {}\left (a \sin \left (x \right )^{2}+b \right ) y^{\prime }+a y \sin \left (2 x \right )+A x \left (a \sin \left (x \right )^{2}+c \right ) = 0 \]

[_linear]

9442

\[ {}y y^{\prime }+y^{2}+4 \left (x +1\right ) x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9443

\[ {}y y^{\prime }+a y^{2}-b \cos \left (x +c \right ) = 0 \]

[_Bernoulli]

9444

\[ {}y y^{\prime }-\sqrt {a y^{2}+b} = 0 \]

[_quadrature]

9445

\[ {}y y^{\prime }+x y^{2}-4 x = 0 \]

[_separable]

9452

\[ {}\left (y-x^{2}\right ) y^{\prime }-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9453

\[ {}\left (y-x^{2}\right ) y^{\prime }+4 y x = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9455

\[ {}2 y y^{\prime }-x y^{2}-x^{3} = 0 \]

[_rational, _Bernoulli]

9458

\[ {}\left (2 y-x \right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9462

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9464

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9467

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9468

\[ {}x y y^{\prime }-y^{2}+a \,x^{3} \cos \left (x \right ) = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

9470

\[ {}\left (y x +a \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9474

\[ {}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9475

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9476

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9477

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9478

\[ {}x \left (2 y+x -1\right ) y^{\prime }-y \left (y+2 x +1\right ) = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9479

\[ {}x \left (2 y-x -1\right ) y^{\prime }+y \left (2 x -y-1\right ) = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9481

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9483

\[ {}\left (6 y x +x^{2}+3\right ) y^{\prime }+3 y^{2}+2 y x +2 x = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9486

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9489

\[ {}x \left (y x -2\right ) y^{\prime }+y^{3} x^{2}+x y^{2}-2 y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9490

\[ {}x \left (y x -3\right ) y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9491

\[ {}x^{2} \left (-1+y\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[_separable]

9493

\[ {}2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9494

\[ {}2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_Bernoulli]

9495

\[ {}\left (2 x^{2} y+x \right ) y^{\prime }-y^{3} x^{2}+2 x y^{2}+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9496

\[ {}\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9498

\[ {}2 x^{3}+y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[_rational, _Bernoulli]

9502

\[ {}y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1 = 0 \]

[_exact, _Bernoulli]

9503

\[ {}f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[_Bernoulli]

9505

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

9506

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9508

\[ {}\left (y^{2}+x^{2}+a \right ) y^{\prime }+2 y x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9509

\[ {}\left (y^{2}+x^{2}+a \right ) y^{\prime }+2 y x +x^{2}+b = 0 \]

[_exact, _rational]

9510

\[ {}\left (y^{2}+x^{2}+x \right ) y^{\prime }-y = 0 \]

[_rational]

9511

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9512

\[ {}\left (y^{2}+x^{4}\right ) y^{\prime }-4 x^{3} y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9513

\[ {}\left (y^{2}+4 \sin \left (x \right )\right ) y^{\prime }-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9518

\[ {}3 \left (y^{2}-x^{2}\right ) y^{\prime }+2 y^{3}-6 x \left (x +1\right ) y-3 \,{\mathrm e}^{x} = 0 \]

[‘y=_G(x,y’)‘]

9519

\[ {}\left (x^{2}+4 y^{2}\right ) y^{\prime }-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9520

\[ {}\left (4 y^{2}+2 y x +3 x^{2}\right ) y^{\prime }+y^{2}+6 y x +2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9523

\[ {}\left (6 y^{2}-3 x^{2} y+1\right ) y^{\prime }-3 x y^{2}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9524

\[ {}\left (6 y-x \right )^{2} y^{\prime }-6 y^{2}+2 y x +a = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9525

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9529

\[ {}x \left (y^{2}+x^{2}-a \right ) y^{\prime }-y \left (y^{2}+x^{2}+a \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9530

\[ {}x \left (y^{2}+y x -x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9533

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9534

\[ {}\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 y x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

9535

\[ {}6 x y^{2} y^{\prime }+2 y^{3}+x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9536

\[ {}\left (x^{2}+6 x y^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9537

\[ {}\left (x^{2} y^{2}+x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9538

\[ {}\left (y x -1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9539

\[ {}\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 y^{3} x^{2}+x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9540

\[ {}\left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2} = 0 \]

[_exact, _rational]

9541

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9542

\[ {}\left (y^{2}+x^{2}+a \right ) y y^{\prime }+\left (y^{2}+x^{2}-a \right ) x = 0 \]

[_exact, _rational]

9543

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9544

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

9545

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9546

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9549

\[ {}x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right ) = 0 \]

[_Bernoulli]

9550

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }-y^{4}+2 x^{3} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9551

\[ {}\left (2 x y^{3}+y\right ) y^{\prime }+2 y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9552

\[ {}\left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2} = 0 \]

[_rational]

9553

\[ {}\left (3 x y^{3}-4 y x +y\right ) y^{\prime }+y^{2} \left (y^{2}-2\right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9554

\[ {}\left (7 x y^{3}+y-5 x \right ) y^{\prime }+y^{4}-5 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9557

\[ {}\left (10 y^{3} x^{2}-3 y^{2}-2\right ) y^{\prime }+5 x y^{4}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9558

\[ {}\left (a x y^{3}+c \right ) x y^{\prime }+\left (b \,x^{3} y+c \right ) y = 0 \]

[_rational]

9559

\[ {}\left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y = 0 \]

[_rational]

9567

\[ {}\left (\sqrt {y x}-1\right ) x y^{\prime }-\left (\sqrt {y x}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

9570

\[ {}\sqrt {-1+y^{2}}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

9571

\[ {}\left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y = 0 \]

[_exact]

9575

\[ {}\left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

unknown

9576

\[ {}\left (x \,{\mathrm e}^{y}+{\mathrm e}^{x}\right ) y^{\prime }+{\mathrm e}^{y}+y \,{\mathrm e}^{x} = 0 \]

[_exact]

9577

\[ {}x \left (3 \,{\mathrm e}^{y x}+2 \,{\mathrm e}^{-y x}\right ) \left (y^{\prime } x +y\right )+1 = 0 \]

[[_homogeneous, ‘class G‘]]

9578

\[ {}\left (\ln \left (y\right )+x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

9579

\[ {}\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

9580

\[ {}x \left (2 x^{2} y \ln \left (y\right )+1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9581

\[ {}x \left (y \ln \left (y x \right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (y x \right )-y+a x \right ) = 0 \]

[‘y=_G(x,y’)‘]

9582

\[ {}y^{\prime } \left (1+\sin \left (x \right )\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

9583

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

9587

\[ {}y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right ) = 0 \]

unknown

9588

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

9589

\[ {}\left (x \sin \left (y\right )-1\right ) y^{\prime }+\cos \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9590

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

9591

\[ {}\left (x^{2} \cos \left (y\right )+2 y \sin \left (x \right )\right ) y^{\prime }+2 x \sin \left (y\right )+y^{2} \cos \left (x \right ) = 0 \]

[_exact]

9593

\[ {}y^{\prime } \sin \left (y\right ) \cos \left (x \right )+\sin \left (x \right ) \cos \left (y\right ) = 0 \]

[_separable]

9595

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

9596

\[ {}\left (x \sin \left (y x \right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (y x \right )+\cos \left (x +y\right )+\cos \left (x \right ) = 0 \]

[_exact]

9597

\[ {}\left (x^{2} y \sin \left (y x \right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (y x \right )-y = 0 \]

[[_homogeneous, ‘class G‘]]

9598

\[ {}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9599

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9600

\[ {}\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

9626

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

9630

\[ {}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

9668

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

9672

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

9674

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

9676

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

9678

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

9682

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

9696

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

9704

\[ {}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0 \]

[_quadrature]

9714

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

9738

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

9759

\[ {}{y^{\prime }}^{3}-\left (y^{2}+y x +x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

9769

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

9772

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

9773

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

9884

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9889

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9906

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \]

[‘y=_G(x,y’)‘]

9916

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (x +1\right ) x \right ) y x^{4}-\ln \left (\left (x +1\right ) x \right ) x^{3}\right )}{x} \]

[_Bernoulli]

9920

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9921

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9924

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \]

[‘y=_G(x,y’)‘]

9938

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9961

\[ {}y^{\prime } = \frac {\left (x^{3}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9962

\[ {}y^{\prime } = \frac {y \left (x -y\right )}{x \left (x -y^{3}\right )} \]

[_rational]

9981

\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y^{3}\right )} \]

[_rational]

9983

\[ {}y^{\prime } = \frac {\left (x^{2}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9984

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9996

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9998

\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \]

[_Bernoulli]

10014

\[ {}y^{\prime } = \frac {\left (x^{4}+x^{3}+x +3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10026

\[ {}y^{\prime } = -\frac {y \left (y x +1\right )}{x \left (y x +1-y\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10030

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10032

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

10051

\[ {}y^{\prime } = \frac {y}{x \left (-1+y x +x y^{3}+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10054

\[ {}y^{\prime } = \frac {y \left (y x +1\right )}{x \left (-y x -1+y^{4} x^{3}\right )} \]

[_rational]

10056

\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y+y^{3}+y^{4}\right )} \]

[_rational]

10063

\[ {}y^{\prime } = \frac {y \left (x -y\right )}{x \left (x -y-y^{3}-y^{4}\right )} \]

[_rational]

10086

\[ {}y^{\prime } = \frac {14 y x +12+2 x +x^{3} y^{3}+6 x^{2} y^{2}}{x^{2} \left (y x +2+x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10093

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+x \cos \left (2 y\right )+\cos \left (2 y\right ) x^{3}+\cos \left (2 y\right ) x^{4}+x +x^{3}+x^{4}}{2 x} \]

[‘y=_G(x,y’)‘]

10104

\[ {}y^{\prime } = \frac {-30 x^{3} y+12 x^{6}+70 x^{{7}/{2}}-30 x^{3}-25 y \sqrt {x}+50 x -25 \sqrt {x}-25}{5 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10119

\[ {}y^{\prime } = \frac {y a^{2} x +a +a^{2} x +y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{2} x^{2} \left (a x y+1+a x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10133

\[ {}y^{\prime } = \frac {\left (y-a \ln \left (y\right ) x +x^{2}\right ) y}{\left (-y \ln \left (y\right )-y \ln \left (x \right )-y+a x \right ) x} \]

[NONE]

10191

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10192

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10197

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10200

\[ {}y^{\prime } = \frac {-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10201

\[ {}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10212

\[ {}y^{\prime } = \frac {x^{3} y^{3}+6 x^{2} y^{2}+12 y x +8+2 x}{x^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10213

\[ {}y^{\prime } = \frac {y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

11223

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

11224

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

11225

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

11226

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

[_linear]

11241

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

11277

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11387

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

[_linear]

11548

\[ {}y y^{\prime }-y = A \]

[_quadrature]

11716

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11719

\[ {}\left (y+A \,x^{n}+a \right ) y^{\prime }+n A \,x^{n -1} y+k \,x^{m}+b = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12020

\[ {}\frac {1+2 y x}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12021

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12022

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12023

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

12024

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12027

\[ {}2 \left (1-y^{2}\right ) x y+\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12031

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12033

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12034

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12038

\[ {}y+2 x y^{2}-y^{3} x^{2}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12039

\[ {}2 y+3 x y^{2}+\left (2 x^{2} y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12040

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12041

\[ {}y^{\prime }+y \cot \left (x \right ) = \sec \left (x \right ) \]

[_linear]

12042

\[ {}y^{\prime } x +\left (x +1\right ) y = {\mathrm e}^{x} \]

[_linear]

12043

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

12044

\[ {}\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2 \]

[_linear]

12045

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

12047

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

12048

\[ {}\sin \left (y\right ) y^{\prime }+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

12052

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12054

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12055

\[ {}\frac {-y+y^{\prime } x}{\sqrt {x^{2}-y^{2}}} = y^{\prime } x \]

[‘y=_G(x,y’)‘]

12056

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12057

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12058

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12059

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

12060

\[ {}3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12061

\[ {}2 x +\left (x^{2}+y^{2}+2 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12062

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12063

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12065

\[ {}y^{\prime } x -y+2 x^{2} y-x^{3} = 0 \]

[_linear]

12066

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12067

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12071

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

12073

\[ {}y^{\prime } x +y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

[_Bernoulli]

12074

\[ {}\left (1-x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

[_separable]

12075

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12078

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12080

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

12081

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x = a x y^{2} \]

[_separable]

12082

\[ {}x y^{2} \left (3 y+y^{\prime } x \right )-2 y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12083

\[ {}y^{\prime } \left (x^{2}+1\right )+y = \arctan \left (x \right ) \]

[_linear]

12084

\[ {}5 y x -3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12085

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

12086

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12087

\[ {}\left (1-x \right ) y-\left (1+y\right ) x y^{\prime } = 0 \]

[_separable]

12088

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12091

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12092

\[ {}2 x^{3} y^{2}-y+\left (2 y^{3} x^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

12095

\[ {}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

12098

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0 \]

[_quadrature]

12103

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12131

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12137

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

12247

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12248

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12249

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12251

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12252

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

12253

\[ {}2 t x^{\prime } = x \]

[_separable]

12256

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

12258

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

12259

\[ {}x^{\prime } = \frac {1+t}{\sqrt {t}} \]
i.c.

[_quadrature]

12261

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

12262

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

12263

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

12264

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

12266

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12267

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12268

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

12269

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

12270

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12271

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

12272

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

12273

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

12274

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

12275

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

12276

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

12277

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

12278

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

12279

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12280

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

12282

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12283

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12284

\[ {}x^{\prime } = x \left (4+x\right ) \]
i.c.

[_quadrature]

12285

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12286

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12288

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

12289

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12290

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

12291

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

12292

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12293

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12295

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12296

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12297

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

12300

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

12303

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

12304

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

12305

\[ {}x^{\prime }+2 x t = {\mathrm e}^{-t^{2}} \]

[_linear]

12306

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

12307

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

[[_linear, ‘class A‘]]

12308

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

12309

\[ {}x^{\prime }+\frac {5 x}{t} = 1+t \]
i.c.

[_linear]

12310

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

12311

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]
i.c.

[_linear]

12312

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

12313

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

12314

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

12315

\[ {}y^{\prime }+a y = \sqrt {1+t} \]

[[_linear, ‘class A‘]]

12316

\[ {}x^{\prime } = 2 x t \]

[_separable]

12317

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]
i.c.

[_linear]

12320

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12321

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

12322

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12324

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12326

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

12328

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12329

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

[_exact]

12330

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

[NONE]

12331

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12332

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12333

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

12468

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

12472

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12473

\[ {}y^{\prime } x +y = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12474

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12475

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12480

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

12484

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12485

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12491

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

12492

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

12493

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

12494

\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12495

\[ {}y^{2}+3+\left (2 y x -4\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

12496

\[ {}2 y x +1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12498

\[ {}6 y x +2 y^{2}-5+\left (3 x^{2}+4 y x -6\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12499

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

12500

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12501

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

12502

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12503

\[ {}2 y x -3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12504

\[ {}3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

12505

\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

12506

\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 y x \right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

12507

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12508

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational]

12509

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12510

\[ {}y^{2}+2 y x -x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12511

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

12512

\[ {}4 y x +y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

12513

\[ {}y x +2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

12516

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

12517

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

12518

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

12519

\[ {}x +y-y^{\prime } x = 0 \]

[_linear]

12520

\[ {}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12523

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12524

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12526

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12528

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12529

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12531

\[ {}3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12532

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12533

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12534

\[ {}x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12535

\[ {}2 x^{2}+2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12536

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

12537

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

12538

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12539

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12540

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

12541

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

12542

\[ {}y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1} = x -1 \]

[_linear]

12543

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y = x -1 \]

[_linear]

12544

\[ {}y^{\prime } x +y x +y-1 = 0 \]

[_linear]

12545

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12546

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]

[_linear]

12547

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

12548

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_linear]

12549

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

12550

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

12551

\[ {}y^{\prime } x +y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12552

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

12553

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{x t} \]

[_separable]

12554

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

12555

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

12556

\[ {}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_linear]

12557

\[ {}2 x \left (1+y\right )-y^{\prime } \left (x^{2}+1\right ) = 0 \]
i.c.

[_separable]

12558

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

12559

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

12560

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12561

\[ {}y^{\prime } x +y = \left (y x \right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

12566

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

12567

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

12568

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]

[‘y=_G(x,y’)‘]

12569

\[ {}\left (1+y\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

12573

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

12574

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

12575

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

12576

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

12578

\[ {}{\mathrm e}^{2 x} y^{2}+\left (y \,{\mathrm e}^{2 x}-2 y\right ) y^{\prime } = 0 \]

[_separable]

12579

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

12581

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12582

\[ {}\left (x +1\right ) y^{\prime }+y x = {\mathrm e}^{-x} \]

[_linear]

12584

\[ {}x^{2} y^{\prime }+y x = x y^{3} \]

[_separable]

12585

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

12586

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12587

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12588

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

12589

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

12590

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

12591

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

12593

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

12597

\[ {}5 y x +4 y^{2}+1+\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12598

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

12599

\[ {}y^{2} \left (x +1\right )+y+\left (1+2 y x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12600

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

12601

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12603

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12607

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12866

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

12867

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

12868

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

12869

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

12870

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

12871

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

12872

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

12873

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

12874

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

12875

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12876

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

12877

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

12879

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

12880

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

12881

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

12882

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

12883

\[ {}x^{\prime } = t^{2} x \]

[_separable]

12884

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12885

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

12886

\[ {}x^{\prime }+p x = q \]

[_quadrature]

12887

\[ {}y^{\prime } x = k y \]

[_separable]

12888

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

12889

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

12890

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

12891

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

12892

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

12893

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

12894

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

12895

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

[_linear]

12896

\[ {}y^{\prime }+{\mathrm e}^{-x} y = 1 \]
i.c.

[_linear]

12897

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

[_linear]

12898

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]
i.c.

[_linear]

12899

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

12900

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]
i.c.

[_linear]

12901

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

[[_linear, ‘class A‘]]

12902

\[ {}2 y x -\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12903

\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_linear]

12904

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

12905

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

12906

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

12907

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

12908

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

12911

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13013

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

13014

\[ {}y-y^{\prime } x = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13015

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

13016

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

[_linear]

13017

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13018

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

13019

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

13021

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13024

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13026

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

13030

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13039

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13040

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

13041

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

13045

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

13049

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

13051

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13052

\[ {}y^{\prime } = \frac {x +y-3}{1-x +y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13053

\[ {}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

13054

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

13056

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

13057

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13058

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13110

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

13115

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13117

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

13119

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

13126

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

13128

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13130

\[ {}5 y^{\prime }-y x = 0 \]

[_separable]

13131

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13316

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

13324

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13325

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

13326

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

13327

\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

13328

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

13329

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

13330

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13332

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

13335

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13336

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

13337

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13338

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

13339

\[ {}x +y+\left (-x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13343

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

13344

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13345

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

13348

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

13350

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

13353

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

13354

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

13355

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

[_linear]

13356

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

[_linear]

13357

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

[_linear]

13358

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

[_linear]

13359

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

13360

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

13361

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

[_linear]

13363

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2} = 0 \]

[_separable]

13364

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

13368

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13369

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13370

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

13371

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

13372

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

13373

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (y+2 x \right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

13374

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13375

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13376

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

13381

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

13383

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

13386

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

13438

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13441

\[ {}y^{\prime } \left (x^{2}+1\right )-y x -\alpha = 0 \]

[_linear]

13442

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

13444

\[ {}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

13446

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13451

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]
i.c.

[_linear]

13473

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

13477

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

13478

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

13480

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

13481

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

13483

\[ {}y^{\prime } x -\sin \left (x \right ) = 0 \]

[_quadrature]

13484

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

13488

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

13494

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

13495

\[ {}y^{\prime }-2 y x = 0 \]

[_separable]

13496

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

13498

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

13500

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

13501

\[ {}x y^{\prime } \ln \left (x \right )-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

13513

\[ {}y^{\prime } = 1-x \]

[_quadrature]

13514

\[ {}y^{\prime } = x -1 \]

[_quadrature]

13515

\[ {}y^{\prime } = 1-y \]

[_quadrature]

13516

\[ {}y^{\prime } = 1+y \]

[_quadrature]

13517

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

13518

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

13519

\[ {}y^{\prime } = y x \]

[_separable]

13520

\[ {}y^{\prime } = -y x \]

[_separable]

13523

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

13524

\[ {}y^{\prime } = y x \]

[_separable]

13525

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

13526

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

13527

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

13528

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

13530

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13533

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13535

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

13536

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13537

\[ {}y^{\prime } = \frac {1}{y x} \]

[_separable]

13538

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

13539

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]

[_quadrature]

13540

\[ {}y^{\prime } = \frac {y}{-x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13541

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

13542

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

13543

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

13544

\[ {}y^{\prime } = \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

13545

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

13546

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13547

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

13548

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

13549

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

13550

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

13551

\[ {}y^{\prime } = y x +\frac {1}{x^{2}+1} \]
i.c.

[_linear]

13552

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

13553

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

13554

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

13555

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

13556

\[ {}y^{\prime } = y \cot \left (x \right )+\csc \left (x \right ) \]
i.c.

[_linear]

13557

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13559

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

13560

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

13561

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

13562

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

13563

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

13564

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

13565

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

13566

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

13567

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

13568

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

13569

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

13570

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

13571

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

13572

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

13573

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13574

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

13575

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

13576

\[ {}y^{\prime } = y x +x \]
i.c.

[_separable]

13577

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

13578

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

13579

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

13580

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

13581

\[ {}y^{\prime } = \frac {1-y x}{x^{2}} \]

[_linear]

13582

\[ {}y^{\prime } = -\frac {y \left (y+2 x \right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13583

\[ {}y^{\prime } = \frac {y^{2}}{1-y x} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13584

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

13585

\[ {}y^{\prime } = y x +2 \]
i.c.

[_linear]

13586

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13587

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

13588

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

13589

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

13590

\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]
i.c.

[_linear]

13591

\[ {}x -y y^{\prime } = 0 \]

[_separable]

13592

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13593

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

13594

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

13595

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

13596

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13597

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

13598

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

13599

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13600

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13601

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

13602

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

13603

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

13604

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13605

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13606

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13607

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13608

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13609

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13610

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13611

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13612

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13613

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13614

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13615

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13616

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13617

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13618

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13619

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13620

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13621

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13622

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13623

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

13624

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

13625

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

13626

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13627

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13628

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13629

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13630

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13632

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13633

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13634

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13635

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13636

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

13763

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

13764

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

13765

\[ {}y^{\prime } = t^{4} y \]

[_separable]

13766

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

13767

\[ {}y^{\prime } = 2-y \]

[_quadrature]

13768

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

13769

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

13770

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

13771

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

13772

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

13773

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

13774

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

13775

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

13776

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

13777

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

13778

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

13779

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

13780

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

13781

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

13782

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

13783

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

13784

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13785

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

13786

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

13787

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

13788

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

13789

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

13790

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

13791

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

13792

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

13793

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

13794

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

13795

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

13796

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13797

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

13798

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

13799

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

13800

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

13801

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

13802

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

13803

\[ {}y^{\prime } = y+t +1 \]

[[_linear, ‘class A‘]]

13804

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

13805

\[ {}y^{\prime } = 2 y-t \]
i.c.

[[_linear, ‘class A‘]]

13807

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

13808

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13809

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13811

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13812

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13813

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

13814

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

13815

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

13816

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

13817

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

13818

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

13819

\[ {}y^{\prime } = t +t y \]

[_separable]

13820

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

13821

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

13822

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

13823

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

13824

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

13825

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

13826

\[ {}v^{\prime } = 2 V \left (t \right )-2 v \]

[[_linear, ‘class A‘]]

13827

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

13830

\[ {}y^{\prime } = \sin \left (y\right ) \]
i.c.

[_quadrature]

13831

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

13832

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

13833

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

13834

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

13835

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

13837

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

13838

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

13839

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

13840

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13842

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13843

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13844

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

13845

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13846

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

13847

\[ {}y^{\prime } = \frac {1}{\left (y+2\right )^{2}} \]
i.c.

[_quadrature]

13848

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

13849

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13850

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13851

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13853

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13854

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13856

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13857

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13858

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13860

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13861

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

13862

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13863

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13864

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13865

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13867

\[ {}y^{\prime } = \frac {1}{y-2} \]

[_quadrature]

13868

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

13869

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

13870

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

13871

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

13872

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

13873

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

13874

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13875

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13876

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13877

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13878

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13879

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13880

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13881

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

13882

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13883

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

13885

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

13886

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13887

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

13888

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13889

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13890

\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

13891

\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

13892

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

13893

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

13894

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

13895

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

13896

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13897

\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13898

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

13899

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

13900

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

13901

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

13902

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

13903

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13904

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

13905

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

13906

\[ {}y^{\prime } = -\frac {y}{1+t}+t^{2} \]

[_linear]

13907

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13908

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

13909

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

13910

\[ {}y^{\prime } = -\frac {y}{1+t}+2 \]
i.c.

[_linear]

13911

\[ {}y^{\prime } = \frac {y}{1+t}+4 t^{2}+4 t \]
i.c.

[_linear]

13912

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

13913

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

13914

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

13915

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

13916

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

[_linear]

13917

\[ {}y^{\prime } = t^{2} y+4 \]

[_linear]

13918

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

[_linear]

13919

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

[[_linear, ‘class A‘]]

13920

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

[_linear]

13922

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13923

\[ {}y^{\prime } = t^{r} y+4 \]

[_linear]

13924

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

13925

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13926

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

13927

\[ {}y^{\prime } = 3 y \]

[_quadrature]

13928

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

13929

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

13930

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

13931

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

13933

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13934

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

13935

\[ {}y^{\prime } = t y \]

[_separable]

13936

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

13937

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

13938

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

13939

\[ {}y^{\prime } = t +\frac {2 y}{1+t} \]

[_linear]

13940

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

13941

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

13942

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

13943

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13944

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13945

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

13946

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

13947

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

13948

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

13949

\[ {}y^{\prime } = \frac {\left (1+t \right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

13950

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13952

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

13953

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

13956

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

13957

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

13958

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14141

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14142

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14143

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14145

\[ {}y y^{\prime } = 2 x \]

[_separable]

14151

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14152

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14153

\[ {}y^{\prime } x +\sqrt {x} = 2 \]

[_quadrature]

14154

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

[_quadrature]

14155

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14156

\[ {}y^{\prime } = x \cos \left (x \right ) \]

[_quadrature]

14157

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14158

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14159

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

14163

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

14164

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

14165

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

14166

\[ {}y^{\prime } x +2 = \sqrt {x} \]
i.c.

[_quadrature]

14167

\[ {}y^{\prime } \cos \left (x \right )-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

14168

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1 \]
i.c.

[_quadrature]

14170

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

14171

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14172

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14173

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

14174

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14175

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14176

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14177

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

14178

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

14179

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

14180

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

14181

\[ {}y^{\prime } x = \sin \left (x \right ) \]
i.c.

[_quadrature]

14182

\[ {}y^{\prime } x = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

14186

\[ {}y^{\prime }+3 y x = 6 x \]

[_separable]

14188

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

14189

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14191

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

14192

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

14193

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

14194

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

14196

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14197

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14198

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

[_linear]

14200

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

14201

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

14202

\[ {}y^{\prime }+y x = 4 x \]

[_separable]

14203

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

14204

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14206

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

14207

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14208

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

14209

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14210

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14211

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

14212

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14213

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14214

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14215

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

14216

\[ {}y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14217

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14218

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

14219

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

14220

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

14221

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

14222

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14223

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14224

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14225

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14226

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14227

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14228

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

14229

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1+y^{2} \]

[_separable]

14230

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

14231

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14232

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

14233

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14234

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

14235

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

14236

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

14237

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14238

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

14239

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

14240

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14241

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14242

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14243

\[ {}y^{\prime } = \frac {-1+y^{2}}{y x} \]
i.c.

[_separable]

14244

\[ {}\left (-1+y^{2}\right ) y^{\prime } = 4 y x \]
i.c.

[_separable]

14245

\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14249

\[ {}y^{\prime } = 1+y x +3 y \]

[_linear]

14250

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

14251

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

14252

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

14253

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

14254

\[ {}y^{\prime } x +\cos \left (x^{2}\right ) = 827 y \]

[_linear]

14255

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

14256

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

14257

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

14258

\[ {}y^{\prime }-2 y x = x \]

[_separable]

14259

\[ {}y^{\prime } x +3 y-10 x^{2} = 0 \]

[_linear]

14260

\[ {}x^{2} y^{\prime }+2 y x = \sin \left (x \right ) \]

[_linear]

14261

\[ {}y^{\prime } x = \sqrt {x}+3 y \]

[_linear]

14262

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \]

[_linear]

14263

\[ {}y^{\prime } x +\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

14264

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

14265

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14266

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14267

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

14268

\[ {}3 y+y^{\prime } x = 20 x^{2} \]
i.c.

[_linear]

14269

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

14270

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

14271

\[ {}y^{\prime }+6 y x = \sin \left (x \right ) \]
i.c.

[_linear]

14272

\[ {}x^{2} y^{\prime }+y x = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

14273

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

14275

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14276

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

14278

\[ {}x^{2} y^{\prime }-y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14279

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14280

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14281

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14282

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

14283

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14285

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14286

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14289

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14290

\[ {}\left (-x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14291

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14292

\[ {}\left (2 y x +2 x^{2}\right ) y^{\prime } = x^{2}+2 y x +2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14293

\[ {}y^{\prime }+\frac {y}{x} = y^{3} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14297

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14300

\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \]

[‘y=_G(x,y’)‘]

14302

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14303

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14304

\[ {}2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14305

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14306

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14307

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14308

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14309

\[ {}1+\ln \left (y x \right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

14310

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

14311

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

14312

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14313

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

14315

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

14316

\[ {}3 y+3 y^{2}+\left (2 x +4 y x \right ) y^{\prime } = 0 \]

[_separable]

14317

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

14319

\[ {}4 y x +\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14320

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

14321

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

14322

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

14323

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14325

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

14328

\[ {}4 y x -6+x^{2} y^{\prime } = 0 \]

[_linear]

14329

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14330

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14331

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

14332

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14334

\[ {}2+2 x^{2}-2 y x +y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_linear]

14335

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

14336

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

14337

\[ {}y^{\prime } = \frac {1}{y x -3 x} \]

[_separable]

14339

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

14340

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

14341

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]

[_quadrature]

14342

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14344

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14346

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

14347

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14348

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

14349

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

14350

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14352

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

14353

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14354

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14355

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

14356

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

14357

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

14358

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

14359

\[ {}x +y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14360

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14361

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14362

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

14363

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

14364

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14365

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14367

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14368

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

[_linear]

14369

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

14370

\[ {}x^{2} y^{\prime }+3 y x = 6 \,{\mathrm e}^{-x^{2}} \]

[_linear]

14428

\[ {}3 y+y^{\prime } x = {\mathrm e}^{2 x} \]

[_linear]

14950

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

14952

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

14953

\[ {}y^{\prime }+y x = 0 \]

[_separable]

14954

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14964

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

14965

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14966

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

14967

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

14968

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

14969

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

14970

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

14971

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

14972

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

14973

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

14974

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

14975

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

14976

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

14977

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

14978

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

14979

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

14980

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

14981

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

14982

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

14983

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14990

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

14991

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

14992

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

14993

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

14994

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

14995

\[ {}y^{\prime } = \frac {2 y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14996

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

15000

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15004

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15005

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15012

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15013

\[ {}y \cos \left (y x \right )+\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15014

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15015

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

[_quadrature]

15016

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15017

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15018

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

15021

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15022

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15025

\[ {}y^{\prime } = y+\frac {1}{1-t} \]

[_linear]

15026

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15027

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15029

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15030

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15031

\[ {}t y^{\prime } = y \]

[_separable]

15032

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15033

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15034

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

15035

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

15036

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

15037

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

15038

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15039

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15040

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15041

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15042

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

15043

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

15044

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

15045

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

15046

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

15047

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

15048

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15049

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15050

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

15051

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

15052

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15053

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15054

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15055

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15056

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15057

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15058

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15059

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15060

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

15061

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

15062

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

15063

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

15064

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

15065

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15066

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15067

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

15068

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15069

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

15070

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

15071

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15072

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15073

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

15074

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

15075

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

15076

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

15077

\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15078

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

15079

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

15080

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

15081

\[ {}\frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

15082

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

15083

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

15084

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

15085

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15086

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15087

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15090

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15091

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15092

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15093

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15094

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15095

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15096

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15097

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15098

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

15099

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15100

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15101

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15102

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15103

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15104

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15105

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15106

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15107

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

15108

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

15109

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15110

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15111

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15112

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15113

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15114

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15115

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15116

\[ {}y^{\prime } = -\frac {y-2}{x -2} \]
i.c.

[_separable]

15120

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15121

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15122

\[ {}y^{\prime } = -y \]

[_quadrature]

15123

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15124

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15125

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15126

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15127

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

15128

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15129

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]

[[_linear, ‘class A‘]]

15130

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

15131

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15132

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

15133

\[ {}t y^{\prime }+y = t \]

[_linear]

15134

\[ {}y^{\prime } x +y = x \,{\mathrm e}^{x} \]

[_linear]

15135

\[ {}y^{\prime } x +y = {\mathrm e}^{-x} \]

[_linear]

15136

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

15137

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

15138

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

15139

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

[_linear]

15140

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

15141

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

15142

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

15143

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

15144

\[ {}y^{\prime }+y x = x^{3} \]

[_linear]

15145

\[ {}y^{\prime }-y x = x \]

[_separable]

15146

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

15147

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

15148

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15149

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15150

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

15151

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

15152

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15153

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

15154

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

15155

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15156

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[_linear]

15157

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]
i.c.

[_linear]

15158

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

15159

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15160

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

15161

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

15162

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

15166

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

15167

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15168

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15169

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15170

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

15171

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

15172

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15173

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

15174

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15175

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

15176

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15177

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15178

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

15179

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15180

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15181

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]

[_linear]

15182

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

15183

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15184

\[ {}y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15185

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15186

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15187

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15188

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15189

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

15190

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15191

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

[_exact]

15192

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15193

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

15194

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15195

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

15196

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

15197

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15198

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15199

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

[_exact, _rational]

15200

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15201

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15202

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15203

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

15204

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15205

\[ {}{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15206

\[ {}3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15207

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15208

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

15210

\[ {}2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

[_exact]

15211

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

15212

\[ {}\frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

15213

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15214

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15215

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15216

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

15217

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

15218

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15219

\[ {}{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15220

\[ {}2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15221

\[ {}y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

15222

\[ {}\cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

15223

\[ {}\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]
i.c.

[_exact, _rational, _Bernoulli]

15224

\[ {}\frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

15225

\[ {}-2 x -y \cos \left (y x \right )+\left (2 y-x \cos \left (y x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15226

\[ {}-4 x^{3}+6 y \sin \left (6 y x \right )+\left (4 y^{3}+6 x \sin \left (6 y x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15227

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15228

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15229

\[ {}y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15230

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15231

\[ {}y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

15232

\[ {}5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15234

\[ {}2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

15235

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

15236

\[ {}-1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

15237

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

15238

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15239

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15240

\[ {}y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

[_rational, _Bernoulli]

15242

\[ {}2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

[_Bernoulli]

15244

\[ {}y^{\prime }-2 y = \frac {\cos \left (t \right )}{\sqrt {y}} \]

[_Bernoulli]

15246

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15247

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15248

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15252

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

15253

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15254

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

15255

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

15257

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

15258

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15260

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15261

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15262

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

15263

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15266

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15268

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15271

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

15274

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15275

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

15277

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15278

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15282

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15285

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

15294

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

15297

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15298

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15299

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15300

\[ {}\cos \left (4 x \right )-8 \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

15301

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15302

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

15303

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15304

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

15305

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

15306

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

15307

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

15309

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15310

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

15312

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15313

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15314

\[ {}t^{2}-y+\left (y-t \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15315

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

15316

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

[_exact]

15317

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15318

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

15319

\[ {}y^{\prime }+t y = t \]

[_separable]

15320

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

15321

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

15323

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15325

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15328

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15329

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

15330

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15331

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15332

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15333

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15336

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

15337

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

15338

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

15462

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

15463

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15464

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

15465

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

15466

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

15827

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15828

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

15831

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

15832

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15834

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

15837

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

15838

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

15839

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = 2 x \]

[_separable]

15840

\[ {}y^{\prime } = x +1 \]

[_quadrature]

15841

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

15842

\[ {}y^{\prime } = -x +y \]

[[_linear, ‘class A‘]]

15843

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

15844

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

15845

\[ {}y^{\prime } = \left (-1+y\right ) x \]

[_separable]

15848

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

15849

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

15850

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

15851

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15852

\[ {}y^{\prime } = 1-x \]

[_quadrature]

15853

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

15854

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

15855

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

15856

\[ {}y^{\prime } = 1 \]

[_quadrature]

15857

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

15858

\[ {}y^{\prime } = y \]

[_quadrature]

15859

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

15862

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

15863

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

15864

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

15865

\[ {}1+y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

15866

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

15867

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

15868

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

15871

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

15873

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

15874

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

15875

\[ {}2 x \sqrt {1-y^{2}} = y^{\prime } \left (x^{2}+1\right ) \]

[_separable]

15879

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

15881

\[ {}y^{\prime } x +y = a \left (1+y x \right ) \]
i.c.

[_linear]

15883

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

15895

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

15896

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

15897

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

15900

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

15901

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15905

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15906

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15907

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

15909

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15910

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15911

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15912

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15914

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15915

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15916

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15919

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

15920

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

15921

\[ {}y^{\prime }-2 y x = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

15922

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

15923

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

15924

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

15925

\[ {}y^{\prime }-\tan \left (x \right ) y = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

15926

\[ {}x y^{\prime } \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

15927

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

15928

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

15929

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

15930

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-y x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15931

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

15932

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

[_linear]

15933

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

15934

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

15935

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]
i.c.

[_linear]

15936

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]
i.c.

[_linear]

15937

\[ {}2 y^{\prime } x -y = 1-\frac {2}{\sqrt {x}} \]
i.c.

[_linear]

15938

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]
i.c.

[_linear]

15939

\[ {}y^{\prime } x +y = 2 x \]

[_linear]

15940

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 1 \]

[_linear]

15941

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]
i.c.

[_linear]

15942

\[ {}y^{\prime }+2 y x = 2 x y^{2} \]

[_separable]

15943

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15944

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

15945

\[ {}y^{\prime }+3 y x = y \,{\mathrm e}^{x^{2}} \]

[_separable]

15947

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

15949

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15950

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

15951

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

15953

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x +1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

15956

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15957

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

15958

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

15959

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

15960

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

[[_homogeneous, ‘class D‘], _exact, _rational]

15961

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

15962

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

15963

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

15964

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact]

15965

\[ {}\frac {y+\sin \left (x \right ) \cos \left (y x \right )^{2}}{\cos \left (y x \right )^{2}}+\left (\frac {x}{\cos \left (y x \right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

15966

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15967

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

15968

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15969

\[ {}1-x^{2} y+x^{2} \left (-x +y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

15970

\[ {}x^{2}+y-y^{\prime } x = 0 \]

[_linear]

15971

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15972

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

15973

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

15974

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

15975

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

[_rational]

15977

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

15978

\[ {}x -y x +\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15981

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2} = 0 \]

[_quadrature]

15982

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

15983

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+y x = 0 \]

[_quadrature]

15985

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16013

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+y x +1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16017

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16018

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16022

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

16030

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

16032

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16033

\[ {}5 y x -4 y^{2}-6 x^{2}+\left (y^{2}-8 y x +\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16034

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

[_exact, _rational]

16035

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

16036

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

16037

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

16038

\[ {}x^{2}+y^{\prime } x = 3 x +y^{\prime } \]

[_quadrature]

16039

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16041

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

16044

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16045

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16046

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16047

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16049

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16050

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16052

\[ {}\left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16053

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16058

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16059

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

16060

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

16061

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16064

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16066

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

[[_homogeneous, ‘class G‘]]

16072

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]