2.2.175 Problems 17401 to 17500

Table 2.351: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17401

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.276

17402

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.286

17403

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.296

17404

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.249

17405

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.497

17406

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

17407

\[ {}y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

17408

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

17409

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.345

17410

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.266

17411

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.329

17412

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.341

17413

\[ {}y^{\prime \prime \prime \prime }-9 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.506

17414

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-5 y_{1}+y_{2} \\ y_{2}^{\prime }=-9 y_{1}+5 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.364

17415

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }=6 y_{1}-2 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.352

17416

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-4 y_{2} \\ y_{2}^{\prime }=5 y_{1}-4 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.388

17417

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=6 y_{2} \\ y_{2}^{\prime }=-6 y_{1} \end {array}\right ] \]
i.c.

system_of_ODEs

0.449

17418

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.334

17419

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-64 y_{2} \\ y_{2}^{\prime }=y_{1}-14 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.338

17420

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{2}+2 \,{\mathrm e}^{t} \\ y_{2}^{\prime }=y_{1}-2 y_{2}+\sin \left (2 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.362

17421

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-y_{2}+{\mathrm e}^{-t} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.314

17422

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}-5 y_{2}+3 \\ y_{2}^{\prime }=y_{1}+3 y_{2}+5 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.334

17423

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2}+\sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.337

17424

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-y_{3} \\ y_{2}^{\prime }=y_{1}+y_{3}-{\mathrm e}^{-t} \\ y_{3}^{\prime }=y_{1}+y_{2}+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.249

17425

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.682

17426

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.685

17427

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

17428

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -\pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.583

17429

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.827

17430

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

17431

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.515

17432

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.571

17433

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.680

17434

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.678

17435

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.822

17436

\[ {}y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

3.846

17437

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2.097

17438

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.128

17439

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.244

17440

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.250

17441

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.646

17442

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

17443

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.816

17444

\[ {}y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.537

17445

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.690

17446

\[ {}y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

17447

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.551

17448

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

17449

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.916

17450

\[ {}2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.946

17451

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.169

17452

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2.098

17453

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.856

17454

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.852

17455

\[ {}y^{\prime \prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

17456

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

17457

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

17458

\[ {}y^{\prime \prime }+w^{2} y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.758

17459

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

17460

\[ {}4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.554

17461

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.435

17462

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.693

17463

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

17464

\[ {}y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1.048

17465

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

3.650

17466

\[ {}\frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

17467

\[ {}\frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

17468

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.489

17469

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.543

17470

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

0.143

17471

\[ {}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.056

17472

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.053

17473

\[ {}y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.049

17474

\[ {}\left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.048

17475

\[ {}\left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.052

17476

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.128

17477

\[ {}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.057

17478

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.053

17479

\[ {}y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.051

17480

\[ {}\left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.048

17481

\[ {}\left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.051

17482

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.358

17483

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.451

17484

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.065

17485

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

17486

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

17487

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.072

17488

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.179

17489

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.132

17490

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{2}-4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.464

17491

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+4 x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }=2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.347

17492

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-4 x_{1}+2 x_{2}-2 x_{3} \\ x_{3}^{\prime }=2 x_{1}-2 x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.478

17493

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }=-2 x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+4 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.372

17494

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+6 x_{3} \\ x_{2}^{\prime }=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }=6 x_{1}+x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.517

17495

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.462

17496

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.568

17497

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.549

17498

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }=2 x_{2}+2 x_{3} \\ x_{3}^{\prime }=-x_{1}+x_{2}+3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.484

17499

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{3} \\ x_{2}^{\prime }=2 x_{1} \\ x_{3}^{\prime }=-x_{1}+2 x_{2}+4 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.528

17500

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{3} \\ x_{2}^{\prime }=-2 x_{2} \\ x_{3}^{\prime }=3 x_{1}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.628