# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.276 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.286 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.296 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.249 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.497 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.454 |
|
\[
{}y^{\prime \prime }+w^{2} y = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.290 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.365 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.345 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.266 |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.329 |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.341 |
|
\[
{}y^{\prime \prime \prime \prime }-9 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.506 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-5 y_{1}+y_{2} \\ y_{2}^{\prime }=-9 y_{1}+5 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.364 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }=6 y_{1}-2 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.352 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-4 y_{2} \\ y_{2}^{\prime }=5 y_{1}-4 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.388 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=6 y_{2} \\ y_{2}^{\prime }=-6 y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.449 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.334 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-64 y_{2} \\ y_{2}^{\prime }=y_{1}-14 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.338 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{2}+2 \,{\mathrm e}^{t} \\ y_{2}^{\prime }=y_{1}-2 y_{2}+\sin \left (2 t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.362 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-y_{2}+{\mathrm e}^{-t} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 \,{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.314 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}-5 y_{2}+3 \\ y_{2}^{\prime }=y_{1}+3 y_{2}+5 \cos \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.334 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2}+\sin \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.337 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-y_{3} \\ y_{2}^{\prime }=y_{1}+y_{3}-{\mathrm e}^{-t} \\ y_{3}^{\prime }=y_{1}+y_{2}+{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.249 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.682 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.685 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.514 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -\pi \right ) \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.583 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.827 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.500 |
|
\[
{}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.515 |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.571 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.680 |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.678 |
|
\[
{}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.822 |
|
\[
{}y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
3.846 |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
2.097 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.128 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.244 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.250 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.646 |
|
\[
{}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.589 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.816 |
|
\[
{}y^{\prime \prime }-y = -20 \delta \left (t -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.537 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.690 |
|
\[
{}y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.487 |
|
\[
{}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.551 |
|
\[
{}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.480 |
|
\[
{}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.916 |
|
\[
{}2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.946 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.169 |
|
\[
{}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
2.098 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.856 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.852 |
|
\[
{}y^{\prime \prime }+y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.350 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.691 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.691 |
|
\[
{}y^{\prime \prime }+w^{2} y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.758 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.457 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.554 |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.435 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.693 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.345 |
|
\[
{}y^{\prime \prime \prime \prime }-16 y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.048 |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✗ |
3.650 |
|
\[
{}\frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.350 |
|
\[
{}\frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.355 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{2}+x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.489 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.543 |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.143 |
|
\[
{}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
0.056 |
|
\[
{}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
0.053 |
|
\[
{}y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
0.049 |
|
\[
{}\left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
0.048 |
|
\[
{}\left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
0.052 |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.128 |
|
\[
{}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
0.057 |
|
\[
{}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
0.053 |
|
\[
{}y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
0.051 |
|
\[
{}\left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
0.048 |
|
\[
{}\left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✗ |
0.051 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.358 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.451 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.065 |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.069 |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}x y^{\prime \prime \prime }-y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.179 |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
0.132 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{2}-4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.464 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+4 x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }=2 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.347 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-4 x_{1}+2 x_{2}-2 x_{3} \\ x_{3}^{\prime }=2 x_{1}-2 x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.478 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }=-2 x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+4 x_{2}-3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.372 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+6 x_{3} \\ x_{2}^{\prime }=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }=6 x_{1}+x_{2}+x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.517 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.462 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.568 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.549 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }=2 x_{2}+2 x_{3} \\ x_{3}^{\prime }=-x_{1}+x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.484 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{3} \\ x_{2}^{\prime }=2 x_{1} \\ x_{3}^{\prime }=-x_{1}+2 x_{2}+4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.528 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{3} \\ x_{2}^{\prime }=-2 x_{2} \\ x_{3}^{\prime }=3 x_{1}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.628 |
|