2.2.175 Problems 17401 to 17500

Table 2.351: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17401

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

6.529

17402

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

7.555

17403

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

[_exact]

36.629

17404

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1.455

17405

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

1.692

17406

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

4.573

17407

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.475

17408

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.830

17409

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.576

17410

\[ {}\frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

[NONE]

11.148

17411

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.200

17412

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.106

17413

\[ {}3 x^{2} y+2 x y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

2.072

17414

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

[[_linear, ‘class A‘]]

1.268

17415

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

[_quadrature]

0.686

17416

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1.722

17417

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.364

17418

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

[_rational]

1.257

17419

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1.430

17420

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.632

17421

\[ {}y y^{\prime } = x +1 \]

[_separable]

2.424

17422

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

[_separable]

1.350

17423

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

23.175

17424

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

[_separable]

2.241

17425

\[ {}\sqrt {x^{2}-y^{2}}+y = y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

53.517

17426

\[ {}x y y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.644

17427

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.196

17428

\[ {}y^{\prime } x -4 \sqrt {y^{2}-x^{2}} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

49.102

17429

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17.121

17430

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.579

17431

\[ {}x y y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

11.495

17432

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1548.904

17433

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.976

17434

\[ {}y^{\prime } = y \left (t y^{3}-1\right ) \]

[_Bernoulli]

1.270

17435

\[ {}y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.384

17436

\[ {}t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.444

17437

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

[_separable]

39.544

17438

\[ {}3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

72.078

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

2.434

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

1.378

17441

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

1.679

17442

\[ {}y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

[_Riccati]

1.636

17443

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.476

17444

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

1.412

17445

\[ {}y^{\prime }-4 \,{\mathrm e}^{x} y^{2} = y \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.464

17446

\[ {}y^{\prime } x +\left (x +1\right ) y = x \]

[_linear]

1.109

17447

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

[_Bernoulli]

40.299

17448

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

[_separable]

1.638

17449

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

2.137

17450

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

[_exact, _Bernoulli]

1.442

17451

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

[_linear]

1.513

17452

\[ {}y^{\prime } x = -\frac {1}{\ln \left (x \right )} \]

[_quadrature]

0.483

17453

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.573

17454

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.928

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

3.949

17456

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=x+4 \end {array}\right ] \]

system_of_ODEs

0.513

17457

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+\sin \left (t \right ) \\ y^{\prime }=-x+y-\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.146

17458

\[ {}\left [\begin {array}{c} x^{\prime }=-2 t x+y \\ y^{\prime }=3 x-y \end {array}\right ] \]

system_of_ODEs

0.054

17459

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+4 \\ y^{\prime }=-2 x+y-3 \end {array}\right ] \]

system_of_ODEs

0.698

17460

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.700

17461

\[ {}\left [\begin {array}{c} x^{\prime }=-x+t y \\ y^{\prime }=t x-y \end {array}\right ] \]

system_of_ODEs

0.055

17462

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+4 \\ y^{\prime }=-2 x+\sin \left (t \right ) y \end {array}\right ] \]

system_of_ODEs

0.059

17463

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.475

17464

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=3 x-2 y \end {array}\right ] \]

system_of_ODEs

0.403

17465

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.454

17466

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+2 \sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.678

17467

\[ {}\left [\begin {array}{c} x^{\prime }=x-4 y+2 t \\ y^{\prime }=x-3 y-3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.559

17468

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y+1 \\ y^{\prime }=x+y-3 \end {array}\right ] \]

system_of_ODEs

0.758

17469

\[ {}\left [\begin {array}{c} x^{\prime }=-x-4 y-4 \\ y^{\prime }=x-y-6 \end {array}\right ] \]

system_of_ODEs

0.702

17470

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {x}{4}-\frac {3 y}{4}+8 \\ y^{\prime }=\frac {x}{2}+y-\frac {23}{2} \end {array}\right ] \]

system_of_ODEs

0.625

17471

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y-11 \\ y^{\prime }=-5 x+4 y-35 \end {array}\right ] \]

system_of_ODEs

0.608

17472

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-3 \\ y^{\prime }=-x+y+1 \end {array}\right ] \]

system_of_ODEs

0.705

17473

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+4 y-35 \\ y^{\prime }=-2 x+y-11 \end {array}\right ] \]

system_of_ODEs

0.612

17474

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.424

17475

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ] \]

system_of_ODEs

0.421

17476

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=3 x-2 y \end {array}\right ] \]

system_of_ODEs

0.412

17477

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x-2 y \end {array}\right ] \]

system_of_ODEs

0.415

17478

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.401

17479

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.392

17480

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }=\frac {3 x}{4}+\frac {5 y}{4} \end {array}\right ] \]

system_of_ODEs

0.392

17481

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {3 x}{4}-\frac {7 y}{4} \\ y^{\prime }=\frac {x}{4}+\frac {5 y}{4} \end {array}\right ] \]

system_of_ODEs

0.404

17482

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {x}{4}-\frac {3 y}{4} \\ y^{\prime }=\frac {x}{2}+y \end {array}\right ] \]

system_of_ODEs

0.405

17483

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.398

17484

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=-5 x+4 y \end {array}\right ] \]

system_of_ODEs

0.406

17485

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+6 y \\ y^{\prime }=-x-2 y \end {array}\right ] \]

system_of_ODEs

0.385

17486

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.541

17487

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=3 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.506

17488

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.572

17489

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=-5 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.522

17490

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.554

17491

\[ {}\left [\begin {array}{c} x^{\prime }=-x-4 y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.458

17492

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.453

17493

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-\frac {5 y}{2} \\ y^{\prime }=\frac {9 x}{5}-y \end {array}\right ] \]

system_of_ODEs

0.572

17494

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=5 x-3 y \end {array}\right ] \]

system_of_ODEs

0.496

17495

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=-5 x-y \end {array}\right ] \]

system_of_ODEs

0.497

17496

\[ {}\left [\begin {array}{c} x^{\prime }=-x-4 y \\ y^{\prime }=x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.521

17497

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.497

17498

\[ {}\left [\begin {array}{c} x^{\prime }=x-5 y \\ y^{\prime }=x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.535

17499

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+2 y \\ y^{\prime }=-x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.589

17500

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {3 x}{4}-2 y \\ y^{\prime }=x-\frac {5 y}{4} \end {array}\right ] \]

system_of_ODEs

0.485