| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=3 \delta \left (-2+t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime }&=\delta \left (-2+t \right )-\delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime \prime }&=\delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
y^{\prime \prime }&=\delta \left (t -1\right )-\delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| \begin{align*}
y^{\prime }+2 y&=4 \delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.985 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right )+\delta \left (t -\pi \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| \begin{align*}
y^{\prime \prime }+y&=-2 \delta \left (t -\frac {\pi }{2}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.024 |
|
| \begin{align*}
3 y+y^{\prime }&=\delta \left (-2+t \right ) \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.382 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=\delta \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=\delta \left (-2+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.271 |
|
| \begin{align*}
y^{\prime \prime }-16 y&=\delta \left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.261 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-12 y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-12 y&=\delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.582 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+45 y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime \prime }+9 y^{\prime }&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.935 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-16 y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{2 x -1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
\left (x -3\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x -1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x -1}&=0 \\
\end{align*} Series expansion around \(x=3\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=5\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
-2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.479 |
|
| \begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
y^{\prime \prime }-3 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
\left (-x^{2}+4\right ) y^{\prime \prime }-5 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=-2\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.593 |
|
| \begin{align*}
\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.953 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\lambda y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
y^{\prime \prime }+y \,{\mathrm e}^{2 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=\frac {\pi }{2}\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }+y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.442 |
|
| \begin{align*}
y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.753 |
|
| \begin{align*}
y^{\prime \prime }-y^{2}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| \begin{align*}
y^{\prime }+\cos \left (y\right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.472 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=2\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
11.948 |
|
| \begin{align*}
\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=2\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.197 |
|
| \begin{align*}
\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=2\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
14.838 |
|
| \begin{align*}
{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.335 |
|
| \begin{align*}
y^{\prime \prime }+\frac {\left ({\mathrm e}^{x}+1\right ) y}{1-{\mathrm e}^{x}}&=0 \\
\end{align*} Series expansion around \(x=3\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.584 |
|
| \begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y&=0 \\
\end{align*} Series expansion around \(x=2\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.718 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-{\mathrm e}^{x}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.883 |
|
| \begin{align*}
\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.288 |
|
| \begin{align*}
y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime }+y \,{\mathrm e}^{2 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
y^{\prime }+\cos \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime }+y \ln \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=1\). |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.619 |
|
| \begin{align*}
y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime } x -{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime } x +\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.791 |
|
| \begin{align*}
y^{\prime \prime }+y \ln \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=1\). |
[_Titchmarsh] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
\sqrt {x}\, y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.961 |
|
| \begin{align*}
y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| \begin{align*}
y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.708 |
|
| \begin{align*}
y^{\prime }+y \sqrt {x^{2}+1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.817 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.064 |
|
| \begin{align*}
y^{\prime }+\sqrt {2 x^{2}+1}\, y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.831 |
|
| \begin{align*}
y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| \begin{align*}
y^{\prime \prime }+\cos \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.998 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.955 |
|
| \begin{align*}
\sqrt {x}\, y^{\prime \prime }+y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.930 |
|
| \begin{align*}
\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.721 |
|
| \begin{align*}
\left (2+x \right )^{2} y^{\prime \prime }+\left (2+x \right ) y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.529 |
|
| \begin{align*}
3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.786 |
|
| \begin{align*}
\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.768 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{2+x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
4.265 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=2\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.889 |
|
| \begin{align*}
\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.648 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4}&=0 \\
\end{align*} Series expansion around \(x=3\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}}&=0 \\
\end{align*} Series expansion around \(x=4\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.746 |
|
| \begin{align*}
y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.032 |
|
| \begin{align*}
\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.717 |
|
| \begin{align*}
\left (x^{2}+4\right )^{2} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.880 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
4.698 |
|
| \begin{align*}
\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 y^{\prime } x +10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.905 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\frac {y}{1-x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.855 |
|