2.3.11 first order ode clairaut

Table 2.353: first order ode clairaut

#

ODE

CAS classification

Solved?

169

\[ {}y = y^{\prime } x -\frac {{y^{\prime }}^{2}}{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1536

\[ {}y^{\prime } = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3258

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3259

\[ {}y = y^{\prime } x +\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

3260

\[ {}y = y^{\prime } x -\sqrt {y^{\prime }} \]

[[_homogeneous, ‘class G‘], _Clairaut]

3261

\[ {}y = y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3262

\[ {}y = y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3263

\[ {}y = y^{\prime } x -{y^{\prime }}^{{2}/{3}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3264

\[ {}y = y^{\prime } x +{\mathrm e}^{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3265

\[ {}\left (y-y^{\prime } x \right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3266

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

3903

\[ {}\left (y-y^{\prime } x \right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

4126

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4127

\[ {}y = y^{\prime } x +{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4131

\[ {}2 {y^{\prime }}^{2} \left (y-y^{\prime } x \right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4925

\[ {}{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4926

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4929

\[ {}{y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4930

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4931

\[ {}{y^{\prime }}^{2}-\left (2-x \right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4932

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4937

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4941

\[ {}{y^{\prime }}^{2}-4 \left (x +1\right ) y^{\prime }+4 y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4943

\[ {}{y^{\prime }}^{2}-a x y^{\prime }+a y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4945

\[ {}{y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c = b y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4975

\[ {}2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

4997

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

5002

\[ {}x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5003

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

5004

\[ {}x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

5018

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

5019

\[ {}\left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5022

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (2+y\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5040

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+1+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5041

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

5062

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+b +y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5159

\[ {}{y^{\prime }}^{3}+a x y^{\prime }-a y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5160

\[ {}{y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5168

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5183

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5189

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5220

\[ {}2 \sqrt {a y^{\prime }}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

5226

\[ {}\sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

5227

\[ {}a \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5230

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+y^{\prime } x -y = 0 \]

[_Clairaut]

5231

\[ {}\cos \left (y^{\prime }\right )+y^{\prime } x = y \]

[_Clairaut]

5236

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2} = 1 \]

[_Clairaut]

5240

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5243

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5246

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5247

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y = 0 \]

[_Clairaut]

5257

\[ {}y = y^{\prime } x +\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[_Clairaut]

5321

\[ {}y = y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5322

\[ {}y = y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

6132

\[ {}y = y^{\prime } x +{y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6233

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6235

\[ {}x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

6242

\[ {}y = y^{\prime } x -2 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7693

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7702

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7703

\[ {}y = y^{\prime } x +k {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7708

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

7709

\[ {}y^{\prime } \left (y^{\prime } x -y+k \right )+a = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

7713

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7779

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7784

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+1+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

7787

\[ {}\left (y^{\prime }+1\right )^{2} \left (y-y^{\prime } x \right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7788

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7791

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

7965

\[ {}\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7983

\[ {}x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

[_Clairaut]

9612

\[ {}{y^{\prime }}^{2}+\left (x -2\right ) y^{\prime }-y+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9613

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9614

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9619

\[ {}{y^{\prime }}^{2}+\left (a x +b \right ) y^{\prime }-a y+c = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9633

\[ {}2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9651

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

9659

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

9660

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (2+y\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9661

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

9662

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

9663

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

9671

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

9679

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

9684

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

9754

\[ {}{y^{\prime }}^{3}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9755

\[ {}{y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9766

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9788

\[ {}\sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

9797

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9802

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}-1 = 0 \]

[_Clairaut]

12114

\[ {}\left (-y+y^{\prime } x \right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

12124

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

12130

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

12134

\[ {}y = y^{\prime } x +\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

12136

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x -2\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

13042

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13043

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13059

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

13317

\[ {}{y^{\prime }}^{2}-y^{\prime }-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

13382

\[ {}y = y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

13384

\[ {}y = y^{\prime } x +\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

13385

\[ {}y = y^{\prime } x -\frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

13558

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13637

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13638

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13639

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13640

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13641

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14299

\[ {}y^{\prime }+2 x = 2 \sqrt {y+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15287

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15288

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

15289

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15290

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15291

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15324

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15326

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15327

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16005

\[ {}y = y^{\prime } x +\frac {a}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16006

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16007

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16008

\[ {}y = y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16009

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

16028

\[ {}y = y^{\prime } x +\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]