2.3.12 first order ode dAlembert

Table 2.355: first order ode dAlembert

#

ODE

CAS classification

Solved?

31

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

32

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

107

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

117

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

120

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

164

\[ {}y^{\prime } = \frac {2 y-x +7}{4 x -3 y-18} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

165

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

168

\[ {}y^{\prime }+2 y x = 1+x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

208

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

212

\[ {}y^{\prime } = \frac {3 y+x}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

731

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

741

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

744

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {3 y+x}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1160

\[ {}y^{\prime } = \frac {4 y-3 x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1161

\[ {}y^{\prime } = -\frac {4 x +3 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1619

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1663

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1666

\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1667

\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1668

\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1800

\[ {}y^{\prime }+y^{2}+4 y x +4 x^{2}+2 = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2330

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2336

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2355

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2508

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2530

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2806

\[ {}-y+y^{\prime } x = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2807

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2810

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2811

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2812

\[ {}\left (y x -x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2813

\[ {}y^{\prime } x +y = 2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2814

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2816

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2817

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2825

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2826

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2828

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2831

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2833

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2834

\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2835

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2836

\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2837

\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2838

\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2840

\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2841

\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2844

\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2845

\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2847

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2848

\[ {}3 x +y+\left (3 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2849

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2852

\[ {}2 y x -\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2867

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2868

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2897

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2941

\[ {}x -2 y+1+\left (y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2945

\[ {}x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2947

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2952

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2956

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2959

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

2969

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2986

\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3221

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3228

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3229

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

3231

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3233

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3234

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3236

\[ {}y {y^{\prime }}^{2} = 3 y^{\prime } x +y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3237

\[ {}8 x +1 = y {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

3239

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3241

\[ {}y+2 y^{\prime } x = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3244

\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3245

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3246

\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \]

[_dAlembert]

3247

\[ {}\left (1+{y^{\prime }}^{2}\right ) y = 2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3248

\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3250

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3251

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3252

\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3254

\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3255

\[ {}2 {y^{\prime }}^{5}+2 y^{\prime } x = y \]

[_dAlembert]

3256

\[ {}\frac {1}{{y^{\prime }}^{2}}+y^{\prime } x = 2 y \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3257

\[ {}2 y = 3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3401

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3402

\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3412

\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3450

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3481

\[ {}-y+y^{\prime } x = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3482

\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3483

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3489

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3528

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3574

\[ {}-y+y^{\prime } x = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3576

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3582

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3585

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3586

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3606

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3607

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3615

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3896

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3897

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3899

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3901

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3904

\[ {}-x +y = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

3913

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3917

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

3928

\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3959

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

3982

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3984

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3990

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3992

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4028

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4031

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4039

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4059

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4060

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4062

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4063

\[ {}x^{2}-y x +y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4064

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4066

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4067

\[ {}y^{\prime } = \sin \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4068

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 y x +1 \]

[[_homogeneous, ‘class C‘], _Riccati]

4129

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4137

\[ {}y^{\prime } x +y = 4 \sqrt {y^{\prime }} \]

[[_homogeneous, ‘class G‘], _dAlembert]

4138

\[ {}2 y^{\prime } x -y = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4144

\[ {}2 \sqrt {y x}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4145

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4212

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4219

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4220

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4271

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4291

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4301

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4354

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4358

\[ {}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4360

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4361

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4368

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4371

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4376

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4378

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4420

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4421

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4481

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4498

\[ {}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4511

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4525

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4526

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4592

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4593

\[ {}\left (x -y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4595

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4599

\[ {}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4600

\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4601

\[ {}\left (2+x +y\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4602

\[ {}\left (3-x -y\right ) y^{\prime } = 1+x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4603

\[ {}\left (3-x +y\right ) y^{\prime } = 11-4 x +3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4605

\[ {}\left (2+2 x -y\right ) y^{\prime }+3+6 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4606

\[ {}\left (3+2 x -y\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4607

\[ {}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4608

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4609

\[ {}\left (1-3 x +y\right ) y^{\prime } = 2 x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4610

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4611

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4612

\[ {}\left (6-4 x -y\right ) y^{\prime } = 2 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4613

\[ {}\left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4614

\[ {}\left (a +b x +y\right ) y^{\prime }+a -b x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4620

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4622

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4623

\[ {}\left (x -2 y+1\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4624

\[ {}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4625

\[ {}\left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4627

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4628

\[ {}\left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4629

\[ {}\left (6 x -2 y\right ) y^{\prime } = 2+3 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4630

\[ {}\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4636

\[ {}\left (x -3 y\right ) y^{\prime }+4+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4637

\[ {}\left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4638

\[ {}\left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4639

\[ {}\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4640

\[ {}\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4642

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4643

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4644

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4645

\[ {}4 \left (1-x -y\right ) y^{\prime }+2-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4646

\[ {}\left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4647

\[ {}\left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4648

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4650

\[ {}\left (5-x +6 y\right ) y^{\prime } = 3-x +4 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4651

\[ {}3 \left (x +2 y\right ) y^{\prime } = 1-x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4652

\[ {}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4654

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4655

\[ {}\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4656

\[ {}\left (3+9 x +21 y\right ) y^{\prime } = 45+7 x -5 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4658

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4659

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4660

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4666

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4672

\[ {}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4699

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4703

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4714

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4715

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4733

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4736

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 y x +2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4741

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4754

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4756

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4768

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4769

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4770

\[ {}\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4773

\[ {}\left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime } = x^{2}-4 y x -2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4774

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4779

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4781

\[ {}\left (4 y^{2}+2 y x +3 x^{2}\right ) y^{\prime }+y^{2}+6 y x +2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4786

\[ {}\left (x^{2}+y x +a y^{2}\right ) y^{\prime } = a \,x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4787

\[ {}\left (a \,x^{2}+2 y x -a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4788

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4794

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4800

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4801

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4802

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4811

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4827

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4828

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4832

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4834

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4836

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4837

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4840

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4843

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4844

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4845

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4846

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4861

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4874

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4876

\[ {}\left (x -2 \sqrt {y x}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4888

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4895

\[ {}{y^{\prime }}^{2} = x -y \]

[[_homogeneous, ‘class C‘], _dAlembert]

4917

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4927

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4928

\[ {}{y^{\prime }}^{2}+y^{\prime } x +x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4935

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4936

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4939

\[ {}{y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4940

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4954

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

4961

\[ {}{y^{\prime }}^{2}-a y y^{\prime }-a x = 0 \]

[_dAlembert]

4973

\[ {}{y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4974

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4978

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4982

\[ {}4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4983

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4984

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4988

\[ {}x {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4989

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4990

\[ {}x {y^{\prime }}^{2}+y^{\prime } = y \]

[_rational, _dAlembert]

4991

\[ {}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

4992

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

4993

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

4994

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4996

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4998

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5000

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5005

\[ {}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5006

\[ {}x {y^{\prime }}^{2}+a +b x -y-b y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5007

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5008

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5009

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5012

\[ {}x {y^{\prime }}^{2}-a y y^{\prime }+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5013

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5017

\[ {}\left (x +1\right ) {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5020

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

5021

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5023

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0 \]

[_rational, _dAlembert]

5025

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5026

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

5027

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5042

\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5064

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (1-a \right ) x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5080

\[ {}y {y^{\prime }}^{2} = a^{2} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5082

\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5083

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5084

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5085

\[ {}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5088

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5092

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5093

\[ {}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5094

\[ {}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5124

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5125

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5126

\[ {}\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5130

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5135

\[ {}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5139

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}{y^{\prime }}^{3}-y^{\prime } x +a y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5156

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5157

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5164

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5169

\[ {}{y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5178

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5182

\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]

[[_homogeneous, ‘class C‘], _dAlembert]

5186

\[ {}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5187

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5188

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5196

\[ {}2 y {y^{\prime }}^{3}-3 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5197

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5209

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5221

\[ {}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (1+y^{\prime }\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

5235

\[ {}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y \]

[_dAlembert]

5242

\[ {}\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5244

\[ {}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5248

\[ {}\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y \]

[_dAlembert]

5251

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5258

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5265

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5266

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5267

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5269

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5271

\[ {}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5293

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5294

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5313

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5325

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

unknown

5328

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5329

\[ {}y-2 y^{\prime } x = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5334

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5335

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5339

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5340

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5346

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5348

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5350

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5352

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5353

\[ {}x +2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5355

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5356

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5357

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5429

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5431

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5432

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5433

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5434

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5453

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5467

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5468

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5470

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5472

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5587

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5683

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5689

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

5690

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

5784

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5816

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5985

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5996

\[ {}\left (-x +2 y\right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5998

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5999

\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6000

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6006

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6009

\[ {}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6025

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6026

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6030

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6133

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6148

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6151

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6152

\[ {}2 y^{\prime } x -2 y = \sqrt {x^{2}+4 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6153

\[ {}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6158

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6159

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6164

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6229

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6231

\[ {}8 y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6236

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6238

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6239

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6241

\[ {}y {y^{\prime }}^{2}-y^{\prime } x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6244

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6245

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6248

\[ {}2 y = {y^{\prime }}^{2}+4 y^{\prime } x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6634

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

6638

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

6639

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

6641

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

6643

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6645

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6647

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6648

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

6649

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

6650

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6657

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6658

\[ {}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6660

\[ {}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6661

\[ {}y^{\prime } x = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6662

\[ {}y+\sqrt {y x}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6665

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6666

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6669

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6672

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6673

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6674

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6678

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6679

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6681

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6683

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6684

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6685

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6686

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6689

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6690

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6691

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6692

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6694

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6712

\[ {}2 x +3+\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

6741

\[ {}y^{\prime } x -2 \sqrt {y x} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

6779

\[ {}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6796

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6797

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6976

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6979

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6981

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7018

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7020

\[ {}y^{\prime } = \frac {y^{2}}{y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7112

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7116

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7118

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7120

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7125

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7126

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7128

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7157

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7166

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7679

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7682

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

7683

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7685

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7686

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7687

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7690

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7692

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7697

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

7706

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7714

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7715

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7716

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7717

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7718

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

7719

\[ {}{y^{\prime }}^{3}-y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7720

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7721

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

7722

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7723

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7774

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7778

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7782

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

7790

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7937

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7977

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

7979

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7992

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7993

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

[_dAlembert]

8007

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8026

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

[[_homogeneous, ‘class A‘], _dAlembert]

8027

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

8122

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8270

\[ {}{y^{\prime }}^{2} = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

8271

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8280

\[ {}y^{\prime } = \sqrt {1+6 x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8284

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8285

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8286

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8287

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9314

\[ {}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9348

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9349

\[ {}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9358

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9359

\[ {}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9360

\[ {}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9446

\[ {}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9456

\[ {}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9458

\[ {}\left (-x +2 y\right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9459

\[ {}\left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9460

\[ {}\left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9461

\[ {}\left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9462

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9463

\[ {}\left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9464

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9466

\[ {}\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9476

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9497

\[ {}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

9506

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9511

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9515

\[ {}\left (x +y\right )^{2} y^{\prime }-a^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9520

\[ {}\left (4 y^{2}+2 y x +3 x^{2}\right ) y^{\prime }+y^{2}+6 y x +2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9525

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9530

\[ {}x \left (y^{2}+y x -x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9532

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9541

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9545

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9546

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9550

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9560

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9561

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9569

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9615

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

9616

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

9623

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

9625

\[ {}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0 \]

[_dAlembert]

9635

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

9641

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9642

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9643

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

9644

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

9645

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9646

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

9650

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9652

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9653

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9654

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

9655

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9656

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9657

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9658

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9687

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9697

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9698

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9699

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9700

\[ {}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9701

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9702

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9705

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9706

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9707

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

9708

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9710

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

9727

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9729

\[ {}\left (-x +y\right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (1+y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9735

\[ {}\left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9761

\[ {}{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9762

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

9767

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

9768

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

9773

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

9779

\[ {}{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0 \]

[_dAlembert]

9789

\[ {}\sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0 \]

[_dAlembert]

10028

\[ {}y^{\prime } = \frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10033

\[ {}y^{\prime } = \frac {-b^{3}+6 b^{2} x -12 b \,x^{2}+8 x^{3}-4 b y^{2}+8 x y^{2}+8 y^{3}}{\left (2 x -b \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10042

\[ {}y^{\prime } = \frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10084

\[ {}y^{\prime } = \frac {b^{3}+y^{2} b^{3}+2 y b^{2} a x +x^{2} b \,a^{2}+y^{3} b^{3}+3 y^{2} b^{2} a x +3 y b \,a^{2} x^{2}+a^{3} x^{3}}{b^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10085

\[ {}y^{\prime } = \frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10091

\[ {}y^{\prime } = \frac {a^{3}+y^{2} a^{3}+2 y a^{2} b x +a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

11228

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

11716

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11717

\[ {}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12021

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12022

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12024

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12030

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12032

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12035

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12037

\[ {}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12057

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12064

\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12066

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12072

\[ {}\left (-x +y\right )^{2} y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12075

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12076

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12079

\[ {}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12090

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12091

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12094

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12097

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12099

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12104

\[ {}2 y^{\prime } x -y+\ln \left (y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

12105

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12106

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12109

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

12111

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12112

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12116

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12121

\[ {}a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12126

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12127

\[ {}y = \left (x +1\right ) {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

12135

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12138

\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

12276

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

12285

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12322

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12494

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12521

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12522

\[ {}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12523

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12530

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12532

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12533

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12577

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12583

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12586

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12587

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12592

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12596

\[ {}x^{2} y^{\prime }+y x = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12603

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12604

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12606

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12607

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12609

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12610

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13011

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13012

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13017

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13029

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13034

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13036

\[ {}y = 5 y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

13044

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13052

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13055

\[ {}\left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13057

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13060

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

13114

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

13318

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13337

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13340

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13341

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13342

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13344

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13346

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13347

\[ {}x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13349

\[ {}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

13351

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13377

\[ {}y = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

13378

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

13379

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

13380

\[ {}y = y {y^{\prime }}^{2}+2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13439

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

13445

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13532

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

13533

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13540

\[ {}y^{\prime } = \frac {y}{-x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13545

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

13626

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13628

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13629

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14193

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

14205

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14212

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14274

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14275

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14276

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

14279

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14281

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14286

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14287

\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14289

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14290

\[ {}\left (-x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14291

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14292

\[ {}\left (2 y x +2 x^{2}\right ) y^{\prime } = x^{2}+2 y x +2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14294

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

14295

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14296

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14298

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14308

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14324

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14330

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14343

\[ {}y^{\prime } = \frac {x +2 y}{x +2 y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14345

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14347

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14351

\[ {}x y y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14358

\[ {}\left (3-x +y\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

14365

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14366

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

14367

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15012

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15071

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15072

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15101

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15103

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15109

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15110

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15117

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15118

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15119

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15213

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15238

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15239

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15260

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15261

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15263

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15265

\[ {}y+2 \sqrt {t^{2}+y^{2}}-t y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15266

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15267

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15268

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15269

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15270

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15276

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15278

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15281

\[ {}t -2 y+1+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15282

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15283

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15284

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15292

\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \]

[_dAlembert]

15293

\[ {}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]

[_dAlembert]

15295

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

15308

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15309

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15312

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15328

\[ {}2 x -y-2+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15335

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

15829

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15832

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15847

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

15873

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

15878

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

15880

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15899

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15901

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15903

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15905

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15906

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15908

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15909

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15910

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15911

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15912

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15913

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15914

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15943

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15956

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15966

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15968

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16000

\[ {}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16001

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16002

\[ {}y = 2 y^{\prime } x +\sin \left (y^{\prime }\right ) \]

[_dAlembert]

16003

\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \]

[_dAlembert]

16004

\[ {}y = \frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }} \]

[_dAlembert]

16021

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = -27 x +27 y \]

[[_homogeneous, ‘class C‘], _dAlembert]

16023

\[ {}y = {y^{\prime }}^{2}-y^{\prime } x +x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16027

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16029

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

16032

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16040

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16047

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16048

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16054

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16057

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16062

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16063

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16067

\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \]

[_rational, _dAlembert]