2.2.170 Problems 16901 to 17000

Table 2.353: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16901

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.709

16902

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

4.629

16903

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.987

16904

\begin{align*} x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.856

16905

\begin{align*} \left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.952

16906

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

4.992

16907

\begin{align*} 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.887

16908

\begin{align*} x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.944

16909

\begin{align*} \left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.893

16910

\begin{align*} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _exact, _linear, _homogeneous]]

3.965

16911

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{2+x}+y&=0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _with_linear_symmetries]]

0.954

16912

\begin{align*} 4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.885

16913

\begin{align*} \left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _with_linear_symmetries]]

1.012

16914

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (-x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.893

16915

\begin{align*} x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.000

16916

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.711

16917

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.123

16918

\begin{align*} x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.867

16919

\begin{align*} x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

4.996

16920

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.881

16921

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

5.895

16922

\begin{align*} y^{\prime \prime } x +4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.436

16923

\begin{align*} y^{\prime \prime } x +4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _with_linear_symmetries]]

1.098

16924

\begin{align*} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _exact, _linear, _homogeneous]]

3.908

16925

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.258

16926

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.801

16927

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.718

16928

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

4.877

16929

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

4.662

16930

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=1-2 x \\ \end{align*}

system_of_ODEs

0.773

16931

\begin{align*} x^{\prime }&=4 x-3 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

system_of_ODEs

0.578

16932

\begin{align*} t x^{\prime }+2 x&=15 y \\ y^{\prime } t&=x \\ \end{align*}

system_of_ODEs

0.035

16933

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=5 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 7 \\ y \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.566

16934

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=8 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 9 \\ \end{align*}

system_of_ODEs

0.552

16935

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=3 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -21 \\ \end{align*}

system_of_ODEs

0.598

16936

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=5 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 15 \\ \end{align*}

system_of_ODEs

0.534

16937

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=2 x \\ \end{align*}

system_of_ODEs

0.463

16938

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x \\ \end{align*}

system_of_ODEs

0.526

16939

\begin{align*} x^{\prime }&=-2 y \\ y^{\prime }&=8 x \\ \end{align*}

system_of_ODEs

0.563

16940

\begin{align*} x^{\prime }&=4 x-13 y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.727

16941

\begin{align*} x^{\prime }&=3 x+2 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= a_{1} \\ y \left (0\right ) &= a_{2} \\ \end{align*}

system_of_ODEs

0.599

16942

\begin{align*} x^{\prime }&=8 x+2 y-17 \\ y^{\prime }&=4 x+y-13 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.778

16943

\begin{align*} x^{\prime }&=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }&=4 x+y-7 \,{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.816

16944

\begin{align*} x^{\prime }&=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }&=x+6 y+2 \,{\mathrm e}^{3 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.998

16945

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=4 x+24 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.821

16946

\begin{align*} x^{\prime }&=4 x-13 y \\ y^{\prime }&=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 13 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

2.123

16947

\begin{align*} x^{\prime }&=4 x+3 y+5 \operatorname {Heaviside}\left (-2+t \right ) \\ y^{\prime }&=x+6 y+17 \operatorname {Heaviside}\left (-2+t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.797

16948

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=8 x+y \\ \end{align*}

system_of_ODEs

0.518

16949

\begin{align*} x^{\prime }&=2 x-5 y \\ y^{\prime }&=3 x-7 y \\ \end{align*}

system_of_ODEs

0.823

16950

\begin{align*} x^{\prime }&=2 x-5 y+4 \\ y^{\prime }&=3 x-7 y+5 \\ \end{align*}

system_of_ODEs

2.022

16951

\begin{align*} x^{\prime }&=3 x+y \\ y^{\prime }&=6 x+2 y \\ \end{align*}

system_of_ODEs

0.546

16952

\begin{align*} x^{\prime }&=x y-6 y \\ y^{\prime }&=x-y-5 \\ \end{align*}

system_of_ODEs

0.035

16953

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-y \\ \end{align*}

system_of_ODEs

0.487

16954

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

36.633

16955

\begin{align*} y y^{\prime }+y^{4}&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

14.814

16956

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.198

16957

\begin{align*} {y^{\prime }}^{2}+y&=0 \\ \end{align*}

[_quadrature]

1.586

16958

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.750

16959

\begin{align*} x {y^{\prime \prime }}^{2}+2 y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.055

16960

\begin{align*} x^{\prime \prime }+2 \sin \left (x\right )&=\sin \left (2 t \right ) \\ \end{align*}

[NONE]

1.692

16961

\begin{align*} 2 x -1-y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.333

16962

\begin{align*} 2 x -y-y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.047

16963

\begin{align*} 2 y+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

1.292

16964

\begin{align*} y^{\prime }+y x&=0 \\ \end{align*}

[_separable]

3.459

16965

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.155

16966

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.800

16967

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.965

16968

\begin{align*} x^{\prime \prime }+2 x^{\prime }-10 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.097

16969

\begin{align*} x^{\prime \prime }+x&=t \cos \left (t \right )-\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.768

16970

\begin{align*} y^{\prime \prime }-12 y^{\prime }+40 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.090

16971

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.063

16972

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.066

16973

\begin{align*} x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

17.536

16974

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.829

16975

\begin{align*} y^{\prime }&=-\frac {x}{y} \\ \end{align*}

[_separable]

14.794

16976

\begin{align*} 3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19.253

16977

\begin{align*} y^{\prime }&=-\frac {2 y}{x}-3 \\ \end{align*}

[_linear]

12.785

16978

\begin{align*} y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5.386

16979

\begin{align*} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

7.533

16980

\begin{align*} y^{\prime }&=\left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \\ \end{align*}

[_quadrature]

0.411

16981

\begin{align*} y^{\prime }&=x \sin \left (x^{2}\right ) \\ \end{align*}

[_quadrature]

0.358

16982

\begin{align*} y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\ \end{align*}

[_quadrature]

0.430

16983

\begin{align*} y^{\prime }&=\frac {1}{x \ln \left (x \right )} \\ \end{align*}

[_quadrature]

0.506

16984

\begin{align*} y^{\prime }&=x \ln \left (x \right ) \\ \end{align*}

[_quadrature]

0.402

16985

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x} \\ \end{align*}

[_quadrature]

0.313

16986

\begin{align*} y^{\prime }&=\frac {-2 x -10}{\left (2+x \right ) \left (x -4\right )} \\ \end{align*}

[_quadrature]

0.425

16987

\begin{align*} y^{\prime }&=\frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \\ \end{align*}

[_quadrature]

0.471

16988

\begin{align*} y^{\prime }&=\frac {\sqrt {x^{2}-16}}{x} \\ \end{align*}

[_quadrature]

0.350

16989

\begin{align*} y^{\prime }&=\left (-x^{2}+4\right )^{{3}/{2}} \\ \end{align*}

[_quadrature]

0.368

16990

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-16} \\ \end{align*}

[_quadrature]

0.510

16991

\begin{align*} y^{\prime }&=\cos \left (x \right ) \cot \left (x \right ) \\ \end{align*}

[_quadrature]

0.424

16992

\begin{align*} y^{\prime }&=\sin \left (x \right )^{3} \tan \left (x \right ) \\ \end{align*}

[_quadrature]

0.486

16993

\begin{align*} 2 y+y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

2.374

16994

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.588

16995

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.037

16996

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.045

16997

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.148

16998

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.111

16999

\begin{align*} t^{2} y^{\prime \prime }-12 y^{\prime } t +42 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

8.227

17000

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

5.908