2.2.178 Problems 17701 to 17800

Table 2.357: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

17701

y+y4+y=δ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17702

y+y=δ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17703

y+y5+y=kδ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17704

y+y10+y=kδ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17705

y+w2y=g(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17706

y+6y+25y=sin(αt)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17707

4y+4y+17y=g(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17708

y+y+5y4=1Heaviside(tπ)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17709

y+4y+4y=g(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17710

y+3y+2y=cos(αt)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17711

y16y=g(t)
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17712

y+y+16y=g(t)
i.c.

[[_high_order, _linear, _nonhomogeneous]]

17713

7y5+y=Heaviside(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17714

8y5+y=Heaviside(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17715

[x1=x1+x2+x3x2=2x1+x2x3x3=x2+x3]

system_of_ODEs

17716

[x1=x1x2+4x3x2=3x1+2x2x3x3=2x1+x2x3]

system_of_ODEs

17717

y+6y+3y=t

[[_high_order, _with_linear_symmetries]]

17718

ty+sin(t)y+8y=cos(t)

[[_3rd_order, _linear, _nonhomogeneous]]

17719

t(t1)y+ety+4t2y=0

[[_high_order, _with_linear_symmetries]]

17720

y+ty+t2y+t2y=ln(t)

[[_3rd_order, _linear, _nonhomogeneous]]

17721

(x4)y+(x+1)y+ytan(x)=0

[[_high_order, _with_linear_symmetries]]

17722

(x22)y(6)+x2y+3y=0

[[_high_order, _with_linear_symmetries]]

17723

y+5y+4y=0

[[_high_order, _missing_x]]

17724

ty+sin(t)y+4y=cos(t)

[[_3rd_order, _linear, _nonhomogeneous]]

17725

t(t1)y+ety+7t2y=0

[[_high_order, _with_linear_symmetries]]

17726

y+ty+5t2y+2t3y=ln(t)

[[_3rd_order, _linear, _nonhomogeneous]]

17727

(x1)y+(5+x)y+ytan(x)=0

[[_high_order, _with_linear_symmetries]]

17728

(x225)y(6)+x2y+5y=0

[[_high_order, _with_linear_symmetries]]

17729

[x1=x2+x3x2=x1+x3x3=x1+x2]

system_of_ODEs

17730

[x1=3x1+2x2+4x3x2=2x1+2x3x3=4x1+2x2+3x3]

system_of_ODEs

17731

y+y=0

[[_3rd_order, _missing_x]]

17732

y+y=0

[[_high_order, _missing_x]]

17733

y+4y4y16y=0

[[_3rd_order, _missing_x]]

17734

y+6y+9y=0

[[_high_order, _missing_x]]

17735

xyy=0

[[_3rd_order, _missing_y]]

17736

x3y+x2y2yx+2y=0

[[_3rd_order, _exact, _linear, _homogeneous]]

17737

[x1=4x1+x2x2=x15x2+x3x3=x24x3]

system_of_ODEs

17738

[x1=x1+4x2+4x3x2=3x2+2x3x3=2x2+3x3]

system_of_ODEs

17739

[x1=2x14x2+2x3x2=4x1+2x22x3x3=2x12x2x3]

system_of_ODEs

17740

[x1=2x1+2x2x3x2=2x1+3x22x3x3=2x1+4x23x3]

system_of_ODEs

17741

[x1=x1+x2+6x3x2=x1+6x2+x3x3=6x1+x2+x3]

system_of_ODEs

17742

[x1=3x1+2x2+4x3x2=2x1+2x3x3=4x1+2x2+3x3]

system_of_ODEs

17743

[x1=x1+x2+x3x2=2x1+x2x3x3=8x15x23x3]

system_of_ODEs

17744

[x1=x1x2+4x3x2=3x1+2x2x3x3=2x1+x2x3]

system_of_ODEs

17745

[x1=x1+x2+2x3x2=2x2+2x3x3=x1+x2+3x3]
i.c.

system_of_ODEs

17746

[x1=x3x2=2x1x3=x1+2x2+4x3]
i.c.

system_of_ODEs

17747

[x1=x1+3x3x2=2x2x3=3x1x3]
i.c.

system_of_ODEs

17748

[x1=x12x23x32x2=3x122x23x32x3=2x1+2x2+x3]
i.c.

system_of_ODEs

17749

[x1=x1+5x2+3x35x4x2=2x1+3x2+2x34x4x3=x22x3+x4x4=2x1+4x2+2x35x4]

system_of_ODEs

17750

[x1=5x1+x24x3x4x2=3x2x3=x1x2+x4x4=2x1x2+2x32x4]

system_of_ODEs

17751

[x1=2x1+2x2x4x2=2x1x2+2x4x3=3x3x4=x1+2x2+2x4]

system_of_ODEs

17752

[x1=x1+8x2+5x3+3x4x2=2x1+16x2+10x3+6x4x3=5x114x211x33x4x4=x18x25x33x4]

system_of_ODEs

17753

[x1=2x1+2x22x4x2=x1+3x2x3+x4x3=2x12x24x3+2x4x4=7x1+x27x3+3x4]

system_of_ODEs

17754

[x1=5x12x2x3+2x4+3x5x2=3x2x3=x1x3x5x4=2x1+x24x42x5x5=3x12x2x3+2x4+x5]

system_of_ODEs

17755

[x1=3x22x3+3x4+2x5x2=8x1+6x2+4x38x416x5x3=8x18x26x3+8x416x5x4=8x1+7x2+4x39x416x5x5=3x15x23x3+5x4+7x5]

system_of_ODEs

17756

[x1=2x1+2x2+x3x2=2x1+2x2+2x3x3=2x13x23x3]

system_of_ODEs

17757

[x1=2x14x2x3x2=x1+x2+3x3x3=3x14x22x3]

system_of_ODEs

17758

[x1=2x2x3x2=x1x2+x3x3=x12x22x3]

system_of_ODEs

17759

[x1=4x1+2x2x3x2=6x13x3x3=8x232x3]

system_of_ODEs

17760

[x1=7x1+6x26x3x2=9x1+5x29x3x3=x2x3]

system_of_ODEs

17761

[x1=4x13+4x2311x33x2=16x13x23+14x33x3=3x12x22x3]

system_of_ODEs

17762

[x1=x1+x2+x3x2=2x1+x2x3x3=8x15x23x3]

system_of_ODEs

17763

[x1=x1x2+4x3x2=3x1+2x2x3x3=2x1+x2x3]

system_of_ODEs

17764

[x1=3x14+29x2411x32x2=3x14+3x245x32x3=5x14+11x245x32]

system_of_ODEs

17765

[x1=2x1x2+4x3+2x4x2=19x16x2+6x3+16x4x3=9x1x2+x3+6x4x4=5x13x2+6x3+5x4]

system_of_ODEs

17766

[x1=3x1+6x2+2x32x4x2=2x13x26x3+2x4x3=4x1+8x2+3x34x4x4=2x12x26x3+x4]

system_of_ODEs

17767

[x1=3x14x2+5x3+9x4x2=2x15x2+4x3+12x4x3=2x1x3+2x4x4=2x2+2x3+3x4]

system_of_ODEs

17768

[x1=3x15x2+8x3+14x4x2=6x18x2+11x3+27x4x3=6x14x2+7x3+17x4x4=2x2+2x3+4x4]

system_of_ODEs

17769

[x1=3x22x4x2=x12+x23x35x42x3=3x25x33x4x4=x1+3x23x4]

system_of_ODEs

17770

[x1=3x12x2x2=2x12x2]

system_of_ODEs

17771

[x1=3x1+2x2x2=x123x2]

system_of_ODEs

17772

[x1=3x14x2x2=x1x2]

system_of_ODEs

17773

[x1=x12x24x2=x1x22]

system_of_ODEs

17774

[x1=x15x22x2=x12x2]

system_of_ODEs

17775

[x1=x14x2x2=x1x2]

system_of_ODEs

17776

[x1=5x1x2x2=3x1+x2]

system_of_ODEs

17777

[x1=x1x2x2=5x13x2]

system_of_ODEs

17778

[x1=2x1x2x2=3x12x2]

system_of_ODEs

17779

[x1=x12+x22x2=2x1x2]

system_of_ODEs

17780

[x1=3x1+4x2x2=x12x2]

system_of_ODEs

17781

[x1=3x1+5x22x2=5x12+2x2]

system_of_ODEs

17782

[x1=x1+x2+x3x2=2x1+x2x3x3=8x15x23x3]

system_of_ODEs

17783

[x1=x1x2+4x3x2=3x1+2x2x3x3=2x1+x2x3]

system_of_ODEs

17784

[x1=3x19x2x2=x13x2]
i.c.

system_of_ODEs

17785

[x1=2x1x2x2=3x12x2]
i.c.

system_of_ODEs

17786

[x1=4x1x2x2=x12x2]

system_of_ODEs

17787

[x1=5x1x2x2=x1+3x2]

system_of_ODEs

17788

[x1=x15x2x2=x1+3x2]

system_of_ODEs

17789

[x1=x2x3x2=x1+x3x3=x1+x2]

system_of_ODEs

17790

[x1=k1x1x2=k1x1k2x2x3=k2x2]
i.c.

system_of_ODEs

17791

[x1=2x1x2+etx2=3x12x2+t]

system_of_ODEs

17792

[x1=x1+3x2+etx2=3x1x2+3et]

system_of_ODEs

17793

[x1=2x15x2cos(t)x2=x12x2+sin(t)]

system_of_ODEs

17794

[x1=x1+x2+e2tx2=4x12x22et]

system_of_ODEs

17795

[x1=1x2+x3x2=2x2+tx3=2x1x2+3x3+et]

system_of_ODEs

17796

[x1=x12+x22x32+1x2=x12x2+x3+tx3=x12+x223x32+11e3t]

system_of_ODEs

17797

[x1=4x1+x2+3x3+3tx2=2x2x3=2x1+x2+x3+3cos(t)]

system_of_ODEs

17798

[x1=x12+x2+x32x2=x1x2+x3sin(t)x3=x12+x2x32]

system_of_ODEs

17799

[x1=2x1+x2+1x2=x12x2+x3x3=x2x3]
i.c.

system_of_ODEs

17800

[x1=4x19x2x2=x12x2]

system_of_ODEs