2.2.178 Problems 17701 to 17800

Table 2.357: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17701

\[ {}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

118.069

17702

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.352

17703

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.643

17704

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

11.972

17705

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.088

17706

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}+3 x \]

[[_3rd_order, _with_linear_symmetries]]

0.295

17707

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.296

17708

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.068

17709

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

1.633

17710

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

[_Lienard]

1.122

17711

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.313

17712

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.036

17713

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.293

17714

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=z \\ z^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.800

17715

\[ {}\left [\begin {array}{c} y^{\prime }=y+z \\ z^{\prime }=y+z+x \end {array}\right ] \]

system_of_ODEs

0.379

17716

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {y^{2}}{z} \\ z^{\prime }=\frac {y}{2} \end {array}\right ] \]

system_of_ODEs

0.052

17717

\[ {}\left [\begin {array}{c} y^{\prime }=1-\frac {1}{z} \\ z^{\prime }=\frac {1}{y-x} \end {array}\right ] \]

system_of_ODEs

0.052

17718

\[ {}\left [\begin {array}{c} y^{\prime }=-z \\ z^{\prime }=y \end {array}\right ] \]
i.c.

system_of_ODEs

0.408

17719

\[ {}y^{\prime \prime } = x +y^{2} \]
i.c.

[NONE]

0.088

17720

\[ {}y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_Emden, _modified]]

0.437

17721

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {z^{2}}{y} \\ z^{\prime }=\frac {y^{2}}{z} \end {array}\right ] \]

system_of_ODEs

0.051

17722

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {y^{2}}{z} \\ z^{\prime }=\frac {z^{2}}{y} \end {array}\right ] \]

system_of_ODEs

0.051

17723

\[ {}\left [\begin {array}{c} x^{\prime }=y+z-x \\ y^{\prime }=x-y+z \\ z^{\prime }=x+y-z \end {array}\right ] \]

system_of_ODEs

0.364

17724

\[ {}\left [\begin {array}{c} x^{\prime }+x+y=t^{2} \\ y^{\prime }+y+z=2 t \\ z^{\prime }+z=t \end {array}\right ] \]

system_of_ODEs

0.539

17725

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y=7 \,{\mathrm e}^{t}-27 \\ -2 x+y^{\prime }+3 y=-3 \,{\mathrm e}^{t}+12 \end {array}\right ] \]

system_of_ODEs

0.861

17726

\[ {}\left [\begin {array}{c} y^{\prime \prime }+z^{\prime }-2 z={\mathrm e}^{2 x} \\ z^{\prime }+2 y^{\prime }-3 y=0 \end {array}\right ] \]

system_of_ODEs

0.050

17727

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=x+{\mathrm e}^{t}+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.502

17728

\[ {}\left [\begin {array}{c} y^{\prime }+\frac {2 z}{x^{2}}=1 \\ z^{\prime }+y=x \end {array}\right ] \]

system_of_ODEs

0.049

17729

\[ {}\left [\begin {array}{c} x^{\prime } t -x-3 y=t \\ t y^{\prime }-x+y=0 \end {array}\right ] \]

system_of_ODEs

0.051

17730

\[ {}\left [\begin {array}{c} x^{\prime } t +6 x-y-3 z=0 \\ t y^{\prime }+23 x-6 y-9 z=0 \\ t z^{\prime }+x+y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.055

17731

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y={\mathrm e}^{t} \\ y^{\prime }-x+3 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.512

17732

\[ {}y^{\prime } = 2 x \]

[_quadrature]

0.263

17733

\[ {}x y^{\prime } = 2 y \]

[_separable]

1.646

17734

\[ {}y^{\prime } y = {\mathrm e}^{2 x} \]

[_separable]

1.398

17735

\[ {}y^{\prime } = k y \]

[_quadrature]

0.711

17736

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.494

17737

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

2.387

17738

\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.991

17739

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.408

17740

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.855

17741

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.721

17742

\[ {}x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.964

17743

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.529

17744

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

1.636

17745

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

4.045

17746

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

0.313

17747

\[ {}x y^{\prime } = 1 \]

[_quadrature]

0.313

17748

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

0.306

17749

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

0.288

17750

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

0.349

17751

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

0.356

17752

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

0.493

17753

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

0.405

17754

\[ {}x y y^{\prime } = y-1 \]

[_separable]

1.381

17755

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

4.968

17756

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

2.017

17757

\[ {}y^{\prime } = 2 x y \]

[_separable]

1.156

17758

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

1.348

17759

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

0.444

17760

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

1.334

17761

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

1.398

17762

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

1.884

17763

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

[_separable]

1.705

17764

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

0.545

17765

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

0.609

17766

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

0.513

17767

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.477

17768

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.652

17769

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

1.089

17770

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

3.673

17771

\[ {}x y^{\prime } = 2 x^{2}+1 \]
i.c.

[_quadrature]

0.532

17772

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.265

17773

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4.459

17774

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

0.687

17775

\[ {}x y y^{\prime } = \left (x +1\right ) \left (y+1\right ) \]
i.c.

[_separable]

1.440

17776

\[ {}y^{\prime } = 2 x y+1 \]

[_linear]

0.920

17777

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.408

17778

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.063

17779

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

0.836

17780

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

70.940

17781

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.400

17782

\[ {}x^{2} y^{\prime } = 3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.593

17783

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.558

17784

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

26.610

17785

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.704

17786

\[ {}x y^{\prime } = 2 x +3 y \]

[_linear]

1.951

17787

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.308

17788

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.178

17789

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.734

17790

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.545

17791

\[ {}y^{\prime } = \sin \left (x +1-y\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8.314

17792

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.860

17793

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.297

17794

\[ {}2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.927

17795

\[ {}y^{\prime } = \frac {y-1+x}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.073

17796

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1.674

17797

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.750

17798

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.424

17799

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.639

17800

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.490