2.2.171 Problems 17001 to 17100

Table 2.355: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17001

\begin{align*} y^{\prime }&=4 x^{3}-x +2 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.463

17002

\begin{align*} y^{\prime }&=\sin \left (2 t \right )-\cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.586

17003

\begin{align*} y^{\prime }&=\frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \\ y \left (\frac {2}{\pi }\right ) &= 1 \\ \end{align*}

[_quadrature]

0.651

17004

\begin{align*} y^{\prime }&=\frac {\ln \left (x \right )}{x} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_quadrature]

0.627

17005

\begin{align*} y^{\prime }&=\frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \\ \end{align*}

[_separable]

19.333

17006

\begin{align*} y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.557

17007

\begin{align*} y^{\prime } x +y&=\cos \left (x \right ) \\ \end{align*}

[_linear]

2.928

17008

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+153 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.715

17009

\begin{align*} x^{\prime }&=4 y \\ y^{\prime }&=-x-2 y \\ \end{align*}

system_of_ODEs

1.671

17010

\begin{align*} 4 \left (x^{2}+y^{2}\right ) x -5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

24.788

17011

\begin{align*} y^{\prime }&=\sin \left (x \right )^{4} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.030

17012

\begin{align*} y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16}&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ y^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}

[[_high_order, _missing_x]]

0.164

17013

\begin{align*} x^{\prime }&=4 y \\ y^{\prime }&=-4 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.524

17014

\begin{align*} x^{\prime }&=-5 x+4 y \\ y^{\prime }&=2 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.568

17015

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}

[_separable]

4.336

17016

\begin{align*} y^{\prime }-y&=\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.308

17017

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.348

17018

\begin{align*} y^{\prime \prime }-6 y^{\prime }+45 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.229

17019

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -16 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

8.045

17020

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.364

17021

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.845

17022

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _missing_x]]

29.275

17023

\begin{align*} 2 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.552

17024

\begin{align*} y \cos \left (y x \right )+\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.239

17025

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\ \end{align*}

[_quadrature]

0.388

17026

\begin{align*} y^{\prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[_quadrature]

0.441

17027

\begin{align*} y^{\prime }&=\frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \\ \end{align*}

[_quadrature]

0.425

17028

\begin{align*} y^{\prime }&=\frac {x^{2}}{\sqrt {x^{2}-1}} \\ \end{align*}

[_quadrature]

0.394

17029

\begin{align*} 2 y+y^{\prime }&=x^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.921

17030

\begin{align*} y^{\prime \prime }+4 y&=t \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= \frac {\pi }{16} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

53.452

17031

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

6.955

17032

\begin{align*} y^{\prime }&=\cos \left (x \right )^{2} \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.611

17033

\begin{align*} y^{\prime }&=\frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.728

17034

\begin{align*} y^{\prime }+t^{2}&=y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

21.512

17035

\begin{align*} y^{\prime }+t^{2}&=\frac {1}{y^{2}} \\ \end{align*}

[_rational]

3.041

17036

\begin{align*} y^{\prime }&=y+\frac {1}{1-t} \\ \end{align*}

[_linear]

2.408

17037

\begin{align*} y^{\prime }&=y^{{1}/{5}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

18.277

17038

\begin{align*} \frac {y^{\prime }}{t}&=\sqrt {y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

65.797

17039

\begin{align*} y^{\prime }&=4 t^{2}-t y^{2} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_Riccati]

15.439

17040

\begin{align*} y^{\prime }&=y \sqrt {t} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

5.574

17041

\begin{align*} y^{\prime }&=6 y^{{2}/{3}} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_quadrature]

6.023

17042

\begin{align*} y^{\prime } t&=y \\ \end{align*}

[_separable]

3.615

17043

\begin{align*} y^{\prime }&=\tan \left (t \right ) y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

4.421

17044

\begin{align*} y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.412

17045

\begin{align*} y^{\prime }&=\sqrt {y^{2}-1} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

31.978

17046

\begin{align*} y^{\prime }&=\sqrt {y^{2}-1} \\ y \left (4\right ) &= -1 \\ \end{align*}

[_quadrature]

28.915

17047

\begin{align*} y^{\prime }&=\sqrt {y^{2}-1} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

30.280

17048

\begin{align*} y^{\prime }&=\sqrt {y^{2}-1} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_quadrature]

29.632

17049

\begin{align*} y^{\prime }&=\sqrt {25-y^{2}} \\ y \left (-4\right ) &= 3 \\ \end{align*}

[_quadrature]

279.732

17050

\begin{align*} y^{\prime }&=\sqrt {25-y^{2}} \\ y \left (0\right ) &= 5 \\ \end{align*}

[_quadrature]

4.658

17051

\begin{align*} y^{\prime }&=\sqrt {25-y^{2}} \\ y \left (3\right ) &= -6 \\ \end{align*}

[_quadrature]

21.367

17052

\begin{align*} y^{\prime }&=\sqrt {25-y^{2}} \\ y \left (4\right ) &= -5 \\ \end{align*}

[_quadrature]

60.801

17053

\begin{align*} y^{\prime } t +y&=t^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

4.954

17054

\begin{align*} t^{3} y^{\prime }+t^{4} y&=2 t^{3} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

2.329

17055

\begin{align*} 2 y^{\prime }+t y&=\ln \left (t \right ) \\ y \left ({\mathrm e}\right ) &= 0 \\ \end{align*}

[_linear]

3.926

17056

\begin{align*} y^{\prime }+y \sec \left (t \right )&=t \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

3.311

17057

\begin{align*} y^{\prime }+\frac {y}{t -3}&=\frac {1}{t -1} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_linear]

2.773

17058

\begin{align*} \left (-2+t \right ) y^{\prime }+\left (t^{2}-4\right ) y&=\frac {1}{t +2} \\ y \left (0\right ) &= 3 \\ \end{align*}

[_linear]

3.240

17059

\begin{align*} y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}}&=t \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

6.035

17060

\begin{align*} y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}}&=t \\ y \left (3\right ) &= -1 \\ \end{align*}

[_linear]

14.361

17061

\begin{align*} y^{\prime } t +y&=t \sin \left (t \right ) \\ y \left (\pi \right ) &= 1 \\ \end{align*}

[_linear]

2.544

17062

\begin{align*} \tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

3.168

17063

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

14.023

17064

\begin{align*} y^{\prime }&=t y^{2} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

28.949

17065

\begin{align*} y^{\prime }&=-\frac {t}{y} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

30.177

17066

\begin{align*} y^{\prime }&=-y^{3} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

45.346

17067

\begin{align*} y^{\prime }&=\frac {x}{y^{2}} \\ \end{align*}

[_separable]

5.944

17068

\begin{align*} \frac {1}{2 \sqrt {t}}+y^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

14.021

17069

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x^{2}} \\ \end{align*}

[_separable]

20.288

17070

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{y} \\ \end{align*}

[_quadrature]

1.561

17071

\begin{align*} 6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

4.441

17072

\begin{align*} \frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime }&=0 \\ \end{align*}

[_separable]

5.120

17073

\begin{align*} 4 \sinh \left (4 y\right ) y^{\prime }&=6 \cosh \left (3 x \right ) \\ \end{align*}

[_separable]

4.231

17074

\begin{align*} y^{\prime }&=\frac {1+y}{1+t} \\ \end{align*}

[_separable]

4.162

17075

\begin{align*} y^{\prime }&=\frac {2+y}{2 t +1} \\ \end{align*}

[_separable]

15.417

17076

\begin{align*} \frac {3}{t^{2}}&=\left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \\ \end{align*}

[_separable]

6.840

17077

\begin{align*} 3 \sin \left (x \right )-4 y^{\prime } \cos \left (y\right )&=0 \\ \end{align*}

[_separable]

3.031

17078

\begin{align*} \cos \left (y\right ) y^{\prime }&=8 \sin \left (8 t \right ) \\ \end{align*}

[_separable]

3.947

17079

\begin{align*} y^{\prime }+k y&=0 \\ \end{align*}

[_quadrature]

2.126

17080

\begin{align*} \left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right )&=0 \\ \end{align*}

[_separable]

7.171

17081

\begin{align*} \cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

7.154

17082

\begin{align*} y^{\prime }&={\mathrm e}^{2 y+10 t} \\ \end{align*}

[_separable]

3.815

17083

\begin{align*} y^{\prime }&={\mathrm e}^{3 y+2 t} \\ \end{align*}

[_separable]

3.735

17084

\begin{align*} \sin \left (t \right )^{2}&=\cos \left (y\right )^{2} y^{\prime } \\ \end{align*}

[_separable]

3.696

17085

\begin{align*} 3 \sin \left (t \right )-\sin \left (3 t \right )&=\left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \\ \end{align*}

[_separable]

24.710

17086

\begin{align*} x^{\prime }&=\frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \\ \end{align*}

[_separable]

36.617

17087

\begin{align*} \left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2}&=0 \\ \end{align*}

[_separable]

5.193

17088

\begin{align*} y^{\prime }&=\frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.449

17089

\begin{align*} \tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right )&=0 \\ \end{align*}

[_separable]

5.093

17090

\begin{align*} y^{\prime }&=\frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \\ \end{align*}

[_separable]

14.999

17091

\begin{align*} x \sin \left (x^{2}\right )&=\frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \\ \end{align*}

[_separable]

22.202

17092

\begin{align*} \frac {x -2}{x^{2}-4 x +3}&=\frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \\ \end{align*}

[_separable]

5.403

17093

\begin{align*} \frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}}&=\sin \left (x \right )^{3} \cos \left (x \right ) \\ \end{align*}

[_separable]

9.650

17094

\begin{align*} y^{\prime }&=\frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \\ \end{align*}

[_separable]

18.872

17095

\begin{align*} \frac {\sqrt {\ln \left (x \right )}}{x}&=\frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \\ \end{align*}

[_separable]

4.413

17096

\begin{align*} y^{\prime }&=\frac {5^{-t}}{y^{2}} \\ \end{align*}

[_separable]

4.200

17097

\begin{align*} y^{\prime }&=t^{2} y^{2}+y^{2}-t^{2}-1 \\ \end{align*}

[_separable]

5.867

17098

\begin{align*} y^{\prime }&=y^{2}-3 y+2 \\ \end{align*}

[_quadrature]

1.185

17099

\begin{align*} 4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2}&=0 \\ \end{align*}

[_separable]

16.830

17100

\begin{align*} y^{\prime }&=\sin \left (t -y\right )+\sin \left (y+t \right ) \\ \end{align*}

[_separable]

15.998