2.2.178 Problems 17701 to 17800

Table 2.357: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17701

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.579

17702

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.530

17703

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = g \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.528

17704

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.448

17705

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.057

17706

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.649

17707

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.850

17708

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.638

17709

\[ {}y^{\prime \prime }+y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.853

17710

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }-y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.418

17711

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

0.428

17712

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.332

17713

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.247

17714

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.239

17715

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.243

17716

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

17717

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.275

17718

\[ {}y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

17719

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

17720

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.319

17721

\[ {}y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.763

17722

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.749

17723

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.738

17724

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.632

17725

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.251

17726

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.268

17727

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.280

17728

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.236

17729

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.443

17730

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.424

17731

\[ {}y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.277

17732

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

17733

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.332

17734

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.255

17735

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.306

17736

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.314

17737

\[ {}y^{\prime \prime \prime \prime }-9 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.470

17738

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-5 y_{1}+y_{2} \\ y_{2}^{\prime }=-9 y_{1}+5 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.421

17739

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }=6 y_{1}-2 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.418

17740

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-4 y_{2} \\ y_{2}^{\prime }=5 y_{1}-4 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.456

17741

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=6 y_{2} \\ y_{2}^{\prime }=-6 y_{1} \end {array}\right ] \]
i.c.

system_of_ODEs

0.490

17742

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.411

17743

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-64 y_{2} \\ y_{2}^{\prime }=y_{1}-14 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.416

17744

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{2}+2 \,{\mathrm e}^{t} \\ y_{2}^{\prime }=y_{1}-2 y_{2}+\sin \left (2 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.351

17745

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-y_{2}+{\mathrm e}^{-t} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.299

17746

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}-5 y_{2}+3 \\ y_{2}^{\prime }=y_{1}+3 y_{2}+5 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.321

17747

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2}+\sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.314

17748

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-y_{3} \\ y_{2}^{\prime }=y_{1}+y_{3}-{\mathrm e}^{-t} \\ y_{3}^{\prime }=y_{1}+y_{2}+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.242

17749

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

17750

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.587

17751

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.495

17752

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -\pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

17753

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.757

17754

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

17755

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.420

17756

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.468

17757

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

17758

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.605

17759

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.761

17760

\[ {}y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

3.573

17761

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1.888

17762

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.025

17763

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.961

17764

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.062

17765

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.570

17766

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

17767

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.789

17768

\[ {}y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

17769

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.611

17770

\[ {}y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

17771

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

17772

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

17773

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.874

17774

\[ {}2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.879

17775

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.085

17776

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

1.813

17777

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.783

17778

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.772

17779

\[ {}y^{\prime \prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

17780

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.704

17781

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.666

17782

\[ {}y^{\prime \prime }+w^{2} y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.684

17783

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.433

17784

\[ {}4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.352

17785

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.450

17786

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.633

17787

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

17788

\[ {}y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.993

17789

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

3.622

17790

\[ {}\frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

17791

\[ {}\frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.337

17792

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.461

17793

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.513

17794

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

0.138

17795

\[ {}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.069

17796

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.068

17797

\[ {}y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.062

17798

\[ {}\left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.070

17799

\[ {}\left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.059

17800

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.120